
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Symbolic Regression Using Compound
Models

Bc. Ján Gamec

Supervisor: Ing. Jiří Kubalík, Ph.D.
May 2017

ii

Acknowledgements
First of all, I would like to thank my su-
pervisor, Ing. Jiří Kubalík Ph.D. for his
advice, supervision, endless patience and
time he dedicated me while creating this
thesis. I would also like to thank my con-
sultant, Prof. Dr. Ing. Robert Babuška
for valuable research advice. At last but
not least, I would like to express my great
gratitude to my family, friends and es-
pecially my parents, who supported me,
advised me and helped me during whole
study and preparation of this thesis.

Declaration
I hereby declare that I have completed
this thesis independently and that I have
listed all the literature and publications
used within the research and work. I have
no objections to usage of this work in com-
pliance with Act No 121/2000 Sb. (the
Copyright Act), as amended, and in com-
pliance with copyright-related rights cur-
rently in force.

iii

Abstract
The aim of the work is to propose a ro-
bust Symbolic Regression method based
on Genetic Programming, which will be
capable of finding symbolic models for
complex datasets containing nonlineari-
ties, irregularities and other artifacts. The
method is based on a principle of divid-
ing the dataset into regions and finding
a piecewise models locally for them. The
proposed method is tested on synthetic
datasets and also on datasets sampled
from real tasks such as Reinforcement
Learning problems. The performance of
the method is also compared to the perfor-
mance of standard Genetic Programming
approach, which finds single global model
for whole dataset.

Keywords: Symbolic Regressing,
Piecewise Models, Genetic Programming,
Hierarchical Learning

Supervisor: Ing. Jiří Kubalík, Ph.D.

Abstrakt
Cieľom tejto práce je navrhnúť robustnú
metódu pre Symbolickú Regresiu založenú
na princípoch Genetického Programova-
nie, ktorá bude schopná nájsť symbolické
modely zložitých datasetov obsahujúcich
nelinearity, nepravidelnosti a ďalšie arte-
fakty. Metóda je založená na princípe roz-
delenia datasetu na oblasti, na ktorých sa
hľadajú symbolické modely lokálne. Na-
vrhnutá metóda je testovaná na syntetic-
kých datasetoch ako aj datasetoch pochá-
dzajúcich z reálnych úloh ako je napríklad
Reinforcement Learning. Metóda je tak-
tiež porovnaná so štandardnou metódou
založenou na Genetickom Programovaní,
ktorá hľadá jeden globálny model pre celý
dataset.

Kľúčové slová: Symbolická Regresia,
Čiastočné modely, Genetické
programovanie, Hierarchické učenie

iv

Contents
1 Introduction 1
2 Evolutionary approaches in
symbolic regression 3
2.1 Evolutionary Feature Synthesis . . 3
2.2 Multi-gene Genetic Programming 4
2.3 SNGP . 5
2.3.1 SNGP Population 6
2.3.2 Fitness Evaluation 6
2.3.3 SNGP Operator 7
2.3.4 Evolutionary Search 7
2.3.5 Single-run SNGP with LASSO
regression . 8

2.4 Summary . 8
3 Local Model Methods 9
3.1 Local Model Networks 9
3.2 Operating regime decomposition 10
3.3 Multi-Modal Symbolic Regression 11
3.3.1 Clustered Symbolic Regression 12
3.3.2 Transition Modeling 12
3.3.3 Problems in MMSR 12

3.4 Summary . 13
4 Proposed Method 15
4.1 Clustering 16
4.1.1 Spectral clustering 18
4.1.2 Simple Clustering 19
4.1.3 Evolutionary Hierarchical
Clustering (EHC) 20

4.2 Hierarchical learning 24
4.3 Piecewise models merging 27
4.3.1 Labeling unseen data 27
4.3.2 Merging method 1 28
4.3.3 Method 2 30
4.3.4 Method 3 31
4.3.5 Model merging in hierarchical
models . 34

5 Experiments 35
5.1 Setup . 35
5.2 Clustering Experiments 37
5.3 Experiments with proposed
method . 38
5.3.1 Evaluation and Analysis 41

6 Conclusion 47
Bibliography 49
A User Guide 51
A.1 Requirements 51
A.2 Organization of appended CD . 51
A.3 Dataset . 51
A.4 Clustering 51
A.5 Hierarchical Learning 52
A.6 Merging . 53

v

Figures
2.1 The building blocks of the EFS
algorithm. 4

2.2 EFS population example 5
2.3 MGGP individual example 6
2.4 SNGP population example 7

4.1 Block scheme of the proposed
method . 16

4.2 Example of GVF 18
4.3 Simple clustering example 21
4.4 The idea of EHC algorithm 21
4.5 Scheme of the EHC algorithm . . 22
4.6 Hierarchical function distribution 23
4.7 Example of simple neighborhood
search tree . 25

4.8 Example of 4-nearest grid
neighbors . 28

4.9 Merging 1 algorithm example . . 30
4.10 Merging 2 algorithm example . 31
4.11 Merging 3 Case 1 example 33
4.12 Merging 3 Case 2 example 34

5.1 Visualization of 1DOF Swingup
dataset (a) and Robot Arm Policy
dataset (b). 36

5.2 Visualization of 1DOF Swingup
Policy dataset 37

5.3 Custom analytic functions
visualization 37

5.4 Visual comparison of clustering
approaches on 1DOF Swingup
problem . 39

5.5 Visual comparison of clustering
approaches on 1DOF Swingup Policy
problem . 39

5.6 Visual comparison of clustering
approaches on Robot Arm Policy
problem . 40

5.7 Visual comparison of clustering
approaches on custom Fun1 problem 40

5.8 Visual comparison of clustering
approaches on custom Fun2 problem 41

5.9 Visual comparison of best runs of
SNGP and HL on Fun1 dataset . . . 44

5.10 Visual comparison of best runs of
SNGP and HL on Fun2 dataset . . . 44

5.11 Visual comparison of best runs of
SNGP and HL on 1DOF Swingup
dataset . 45

5.12 Visual comparison of best runs of
SNGP and HL on 1DOF Swingup
Policy dataset 46

5.13 Visual comparison of best runs of
SNGP and HL on Robot Arm Policy
dataset . 46

vi

Tables
5.1 Experimental datasets overview. 36
5.2 SNGP Parameters setup 38
5.3 Results of experiments on Function
1. 43

5.4 Results of experiments on Function
2. 44

5.5 Results of experiments on 1 DOF
Swingup problem. 45

5.6 Results of experiments on 1 DOF
Swingup Policy. 45

5.7 Results of experiments on Robot
Arm Policy. 46

vii

Chapter 1
Introduction

Symbolic Regression (SR) is a modeling technique with a wide range of appli-
cations in Mathematics, Physics, Artificial Intelligence and Reinforcement
Learning (RL). A common scenario in SR problems is a discrete dataset of
input points, which were sampled experimentally from problems like robot
control task, or from some analytic function. The main difficulty with such
problems is a complexity of dataset, which is represented by occurrences of
various nonlinearities and irregularities.

Application of standard SR approaches, such as Genetic Programming
(GP) showed, that the task of fitting datasets containing such artifacts is a
really challenging problem, and can be hardly solved using only single run of
standard GP. This is caused not only by insufficient expressiveness of basic
functions set that are used to create a symbolic model in case of a GP, but
also by selection of objective measure, which evaluates the candidate models.
The problem with the objective measures such as Mean Square Error is that
they are global, what makes it difficult to fit a model to local and possibly
detailed artifacts. An example situation of this problem is when such artifact
appears and covers only small area in dataset, and then is usually ignored
by the learning process, which results in a sufficient model in the meaning of
the MSE metric, but may result in an insufficient model in the meaning of
usability.

The thesis proposed a SR method based on GP, which fits a local piecewise
models on the divided dataset, and merges these models into a single com-
pound model. The method utilizes state-of-the-art GP approach called Single
Node Genetic Programming (SNGP). The idea of dividing the dataset is
based on principles of Local Model Networks (LMN) and is used to divide the
dataset into partial datasets, or better said clusters, which might be easier to
fit. SNGP is used to find symbolic models of the partial datasets separately.
In the final phase of the learning process, piecewise models are merged, to
form a single compound model.

The first chapter of this thesis is dedicated to overview of some of the
state of the art evolutionary-based approaches to Symbolic Regression, from
which SNGP was selected as the most promising option, due to previous
experimental results. The next chapter then overviews basic principles of

1

1. Introduction
the Local Model Networks as well as current approaches, which solve the
piecewise modeling in similar areas, such as control tasks.

Chapter 4 describes the proposed method, which is divided into 3 separate
steps including clustering, hierarchical learning of piecewise models and final
merging. It proposes 3 different approaches to clustering and 3 different
approaches to merging. In chapter 5, all approaches are experimentally
evaluated and tested on datasets from RL control problems as well as SR
benchmark problems. Their performance is analyzed and compared to state
of the art implementation of SNGP algorithm, which finds a single global
model for the whole dataset.

Appendix A provides a guide for running the implementation of the method
as well as scripts to visualize datasets, trained models and to replicate the
experiments.

2

Chapter 2
Evolutionary approaches in symbolic
regression

Symbolic Regression (SR) can be described as a type of regression analysis,
where the search space consists of mathematical expressions and functions,
which are combined in order to find a complex model that fits the target
dataset with the lowest possible error, with respect to given error metric.
This is a problem, that can be solved by evolutionary search and particularly
by a technique called Genetic Programming (GP)[1]. Lately, there have
been proposed several approaches based on the standard approach such
as Grammatical Evolution [2] or Gene Expression Programming [3], which
worked well on SR as well. In this chapter, I review some of the state-of-the-art
methods used to solve this problem.

2.1 Evolutionary Feature Synthesis

Evolutionary Feature Synthesis (EFS) is a regression method based on evolu-
tionary computation that generates readable nonlinear models. According to
[4] , EFS is one of the fastest regression tools reported to date. It utilizes a
state-of-the-art implementation of regularized linear regression. The method
combines principles of evolutionary computation and regularized linear regres-
sion, but differs from other population-based approaches in a representation of
individuals in a population. Where similar population-based methods evolve
a set of candidate solutions represented as individuals, the EFS evolves just
single solution (expression), where individuals in the population represent
features usually in a form of mathematical functions. An example population
of EFS is depicted in Figure 2.2.

Figure 2.1 shows the basic building block of the EFS algorithm. In the
initialization step of the algorithm, the population is seeded with functions
fi(X) = Xi, where i = 1...p, where p is number of original variables. The
algorithm then creates a linear combination of current population, which
consists of original variables in the beginning. This step corresponds to the
Model Generation block in Figure 2.1. EFS utilizes a method called LASSO
(Least Absolute Shrinkage and Selection Operator described in [5]) to obtain
coefficients of the linear combination. If error of the linear combination of

3

2. Evolutionary approaches in symbolic regression
Initialization

Model Generation

New features synthesis

Features subset selection

Figure 2.1: The building blocks of the EFS algorithm.

current population is reduced in comparison with the best model found so
far, the newly generated model is stored.

In next step denoted as New feature synthesis in figure, the population is
extended by new features, which are created similarly as in tree-based Genetic
Programming approaches that utilize crossover and mutation operators. In
EFS new features are created applying unary and binary operators like
+, ∗, sin() on existing features.

The last step of the EFS optimization loop is called Features subset selection
and is meant to reduce number of features in the current population according
to their importance in the model. To achieve this, the second run of LASSO
regression is utilized with current population extended by new features, which
estimates the importance of features. In final, there are selected p+q features,
which are stored as a model and µ features that are discarded. This process
is also shown in Figure 2.2.

If the EFS search process does not find a better model for a preset number
of iteration, or maximum number of iterations is reached, the search is stopped.
Else, the search process goes back to Model Generation

2.2 Multi-gene Genetic Programming

In standard GP approaches, there is evolved a population of trees, where each
of the trees encodes some mathematical equation. Each tree (equation) in
the population is called an individual and is evaluated separately. At the end
of search process, there is selected the best single individual, which minimizes
the prediction error on the input.

In contrast with standard GP approach, Multi-Gene Genetic Programming
(MGGP) [6] individual is a combination of several GP trees, where each

4

....................................... 2.3. SNGP

M

p µ

x1 x2 x3 x4 tan(x3)

q

(x4 * x2) ln(x1) x4sin(x2)cos(x1) (-x3)3
x1

(x3+x2)Expression

Function f 1(X) f 2(X) f 3(X) f 4(X) f 5(X) f 6(X) f 7(X) f 8(X) f 9(X) f 10(X) f 11(X)

Score 11 5 4 1 65 4 - - - -

Size 1 1 1 1 2 3 2 4 2 5 2

Figure 2.2: EFS population example - every generation, µ new features are
composed by applying unary or binary operators to the current population of
features. The size of the current population is given by p + q, where p is the
dimensionality of the data and q is the number of composed features surviving
from the previous generation.

tree represents some symbolic function. Single GP tree within an MGGP
individual is called a gene. The whole MGGP individual is then evaluated as
a linear combination of outputs of its genes. This can be formally described
by the equation:

y = a0 + a1f1 + a2f2 . . . anfn,

where f1, . . . , fn are single trees evolved by evolutionary search using
common GP operators and a0, . . . , an are coefficients calculated using ordinary
least squares method.

The initial population of the MGGP is constructed at random, populating
individuals with 1 to Gmax random trees of variable depth. During evolution-
ary process, nodes in trees are added, modified and deleted using crossover
and mutation operators, known from standard GP approach [1]. An example
individual of the MGGP population can be seen in Fig. 2.3.

2.3 SNGP

Single Node Genetic Programming (SNGP) [7, 8] is a graph-based GP system,
that handles individuals in a similar way that the EFS does. The individual
in SNGP is represented not as a GP tree, but as a feature or single program
node. The SNGP individuals are interlinked using predefined operators, which
results in a graph structure such as the one in Figure 2.4. The population is
ordered, so that each individual has its position indexed with number from 0
to N − 1, where N corresponds to the maximum number of individuals. Each
individual can be connected only to individuals which have lower position

5

2. Evolutionary approaches in symbolic regression

5 x1

log

x2 x

+

x2

Sq

x23

f
1

f
2

1

+

Figure 2.3: MGGP individual example - there are evolved multiple tree, where
each tree represents single function. These trees represents symbolic model
y = a0 + a1(5x1 + log(x2 + x1)) + a2(3x2 + x2

2)

index than the current individual.

2.3.1 SNGP Population

SNGP population is an ordered sequence of N individuals

M = {m0,m1, ...,mN−1}

where each individual is a tuple in form

mi =< ui, ri, Si, Pi, Oi >

where:
ui ∈ {T

⋃
F} is a single graph node taken from either the function set

F or the terminal set T defined by a user;
ri is the rating of fitness for the individual;
Si is a set of successors of this node;
Pi is a set of predecessors of the node;
Oi is a vector of outputs generated when this node is evaluated.

A SNGP population is partitioned, so that first K individuals are terminals,
what in case of SR means variables and constants. The otherN−K individuals
are function nodes, which take individuals with lower indexes as operands.
This means that each function node can be seen as a root of a tree, or a
subtree, that is constructed traversing its successors (operands) recursively.

2.3.2 Fitness Evaluation

In SNGP, fitness of the individual is evaluated using output of a tree rooted
in the individual’s node. The evaluation process of SNGP starts at terminal
nodes, which are placed at lower indexes of the population. During initial-
ization, each terminal node is evaluated on all data points and outputs are
stored in Oi vector. Function nodes, which precede terminal nodes in graph

6

....................................... 2.3. SNGP

+

Tan

×

C1 X2 X2 X3

-

 0

C0

{}

{}

 1

X1

{}

{}

 2

X2

{}

{}

3

X3

{}

{}

 4

-

{0,1}

{5,6}

 5

×

{2,4}

{6,7}

 6

Tan

{4,5}

{}

 7

+

{3,5}

{}

u

S

P

N

K

Figure 2.4: SNGP population example - 0th node of the population is generated
constant, X1-3 are input variables and other nodes represent function symbols.

representation then utilize these precalculated outputs to make the evaluation
process more efficient. The outputs of an individual on each data point is
always stored in a vector, so that preceding individuals can utilize them, and
don’t need to reevaluate whole tree again. Note, that outputs on terminal
nodes are calculated only in the initialization phase, because they don’t
change over time. An example of a SNGP population can be seen in Fig. 2.4.
The graph representation corresponds to sequence of individuals below graph.
The population is partitioned into K = 4 terminals and 4 function nodes.

2.3.3 SNGP Operator

SNGP uses only single evolutionary operator called successor mutate (smut).
It selects an individual at random and then exchanges one (or more) of its
operands for another individual in the population.

2.3.4 Evolutionary Search

The evolutionary process is driven using a hill-climbing principle, which
means that the previous population is replaced by a new only if it is not
worse than the previous one. In [7] population evaluation is based on fitness
measurements across whole population, rather than on individuals separately.
The same author also modifies the approach in [8], so that the population is
evaluated according to the best individual. There have also been proposed
several enhancements to the original approach such as [9], where authors
discuss various selection strategies. Authors also mention combination of

7

2. Evolutionary approaches in symbolic regression
SNGP with other approaches such as local search method, which can be
classified as a memetic algorithm. The most promising approach seems to
be a combination with already mentioned LASSO regression [5], which is
discussed in the following section.

2.3.5 Single-run SNGP with LASSO regression

A Single-run SNGP with LASSO regression is an enhancement of the original
SNGP approach proposed in [9]. The main difference between this approach
and the original SNGP lies in the way how a population is evaluated. In
contrast with SNGP described in [8], where population’s fitness corresponds
to the fitness of the best individual, in this approach, fitness of the population
is calculated using outputs of a subset of individuals.

The first step of the evaluation process is calculating the quality of each
individual using Pearson product-moment correlation coefficient between the
individuals’s output and the desired output value.

In the next step, a generalized linear regression model is created, using
only a subset of features from the population. The model is created using
LASSO regression [5]. The subset of features for constructing it is called
set of predictors. The maximum number of predictors is a preset parameter
of the method. The subset of predictors is selected according to a quality
measure calculated in the first step.

The created model consists of a limited number of features, which are called
regressors and their maximum number is also preset as a parameter. The
fitness of the whole population is then calculated as the sum of absolute
errors of the LASSO model outputs and desired values.

2.4 Summary

This chapter describes few of the state-of-the-art evolutionary approaches
utilized in SR. Even though all of these methods are capable of producing
symbolic models, that are much better than the original approach proposed in
[1], all of them have one drawback, which limits them in better performance
on more complex datasets. The drawback is that even if there are evolved
several features in a population, all of them are evaluated globally on whole
dataset. This means that even if the method succeeded in evolving a feature,
which performs well only on a local region of the dataset, the positive outcome
of such feature would be suppressed due to the linear combination of features,
which is global in final. This effect is however undesirable, because I assume
that complex datasets require an approach, which can develop features with
a local domain and output not influenced by concurrent features. I assume
that such features may fit complex areas more easily and result in a more
precise model. In this work, I propose an evolutionary approach based on
SNGP, which evolves features locally and merges them together into a single
model.

8

Chapter 3
Local Model Methods

The biggest problem with SR via GP seems to be the complexity of the
original function. As far as we have just the limited amount of examples, the
method tends to overfit certain areas but also underfit the others. Possible
solution concept to this problem might be to split the state space into several
subregions in which original function behaves simpler and less complex. The
learning algorithm would then try to adapt on these subregions and the
original function should come up from joining these sub-functions, which
correspond to each of these subregions. This chapter will thus overview some
existing approaches that deal with such problems.

3.1 Local Model Networks

The Local Model Networks (LMN) [10] are the generalization of the Radial
Basis Functions (RBF), which were introduced by Broomhead and Lowe
in [11] and Poggio and Girosi in [12]. RBFs are three layered feed-forward
neural networks, which use linear transfer function for the output neurons
and nonlinear (usually Gaussian) transfer function for neurons in the hidden
layer. The training process of the network then adjusts the parameters of the
transfer functions (like centroids in Gaussians) on the hidden neurons, which
leads (in case of Gaussians) to dividing the input space into subregions.

LMNs replaces the hidden neurons in the RBFs with some local submodels
(or local functions in other words), which output is fed into their basis or
validity functions. The validity function, in this case, defines an area in
state space, to which corresponding local model contributes. Authors of a
method in [13] use terminology of operating regimes for these areas, to design
a control system using a global model. The global model is created of multiple
local models according to the domain of corresponding operating regimes.
Formally speaking, the output of the network can be described as:

y =
m∑

i=1
ρi(x, ηi)hi(x, ai),

where hi is the local model, ρi is the validity function, x an input vector
and ηi/ai parameters of validity/local model function. The local model can be

9

3. Local Model Methods
arbitrary linear or nonlinear function, but the validity functions are restricted
to satisfy the constraint

m∑
i=1

ρi(x, ηi) = 1 ∀x ∈ X

The main problem with LMNs is thus not only finding appropriate (and
simple) local models, but also a validity functions, which satisfies the partition
of unity property. There were proposed several techniques to learning and
estimating the parameters of the validity functions.

3.2 Operating regime decomposition

The process of creating the local model networks can be divided into 2 tasks,
where the first one deals with the identification of local models and the other
one deals with the estimation of parameters of the validity function. Usually,
the local models identification task utilizes some a priori knowledge to create
models such as the method proposed in [14], which constructs Takagi-Sugeno
(TS) fuzzy models. A general approach to estimation of parameters of the
validity function is an optimization problem, which minimizes some (objective)
measure. Most of the current approaches to solving these tasks follow the
so-called Divide and Conquer strategy. According to the authors of the
LMN [13], the task of estimating such validity functions may also be called
an operating regime decomposition.

According to [15], the techniques for regime (local subregions) decomposi-
tion can be divided into following classes:..1. Fixed Selection

Centers of the regimes are selected randomly and the dimensions of the
regions are calculated based on some a priori information. This approach
is not suitable for more complex problems...2. Self-organizing and Clustering
This approach utilizes unsupervised learning technique to estimate the
centers of the regimes. Authors of [16] are using well-known Expectation-
Maximization (EM) algorithm to identify centers and parameters of the
operating regimes. The main disadvantage of this approach is that it
does not take into account the complexity of the problem (complexity
of original function in symbolic regression), but only the density of the
function...3. Non-optimal construction algorithms with heuristic growing
strategies
This family of approaches starts with a single regime and iteratively
splits it into smaller subregimes. An example of such approach is the
original algorithm proposed in [13].

10

............................3.3. Multi-Modal Symbolic Regression..4. Splitting and merging
This approach is more oriented on complexity than previous approaches,
because it again starts from a single operating regime and splits it into
two, but then studies the behavior of the subregions and only if their
behavior is satisfactory (less complex than the original regime), the split
is accepted. Otherwise, the regimes are put back together...5. Fine-to-course learning
This approach, in opposite to the previous, begins with a large amount
of simple local models and merge them together to get simpler decompo-
sition.

It’s important to emphasize that all approaches mentioned so far were
strongly related to the control problems and usually utilized in the design of
nonlinear controllers. Symbolic regression problems, in contrast with control
systems, have hardly any a priori knowledge about the problem. Where in
control systems the problem is described and limited by physical laws (which
can also be very hard to model), the symbolic regression on discrete data
does not have any objective measure, which could evaluate the complexity of
the original function. This also limits the usage of the mentioned principles
in symbolic regression, because most of the approaches require some criterion
to evaluate the performance of the regimes. E.g. in case of clustering, the
input sample would be split into clusters, but their performance could be
evaluated only after approximating the local models, which is not feasible
in the means of computational complexity. The regime decomposition in
symbolic regression thus requires some information about the complexity of
the original function, which could be utilized to split the input sample into
regions, where original function behaves less complex.

3.3 Multi-Modal Symbolic Regression

Lipson and Ly algorithm [17] constructs a nonlinear symbolic representation
of a discrete dynamic multi-modal system, using an unlabeled time-series data.
The algorithm is divided into 2 sub-algorithms which are called Clustered
Symbolic Regression and Transition modeling. The problem, which it
solves can be formally described as

mn = T (mn−1, un)

yn = F (mn, un) =


F1(un) if mn = 1
...
FK(un) if mn = K

where un is an input vector at time n, yn is the output vector and mn =
{1, ..,K} is a current mode of the system at time n. F1..K are the piecewise
functions that describe a local behavior of the global function. Function
T (mn−1, un) is a transition function, which defines conditions for transitioning

11

3. Local Model Methods
between 2 system modes. It depends on the mode in which system was in
previous time step and also current input vector. The current mode of the
system can also be understood as an analogy to operating regime or subarea,
in which input vector lies.

3.3.1 Clustered Symbolic Regression

The role of the first sub-algorithm Clustered Symbolic Regression(CSR)
is not only to find symbolic representations of the piecewise functions provided
a discrete dataset, but also to find parameters of membership functions, which
later determine the membership of input points to these piecewise functions.
The algorithm utilizes the generalized EM algorithm. The expectation step
takes current symbolic representations of all piecewise functions and estimates
the membership of the training input-output pairs to the piecewise functions
F1..K . The maximization step then adjusts current symbolic representations
so that they best fit the training samples, according to their membership to
piecewise functions.

3.3.2 Transition Modeling

It is a supervised learning technique, which determines a symbolic represen-
tations of transition events. Informally speaking, the algorithm tries to find
a set of expressions, which describes when a system moves from one mode
(operating regime) to another. The resulting dynamical system (from both
algorithms) can be described as tuple

H =< W,M,F, T >

, where W is input data, M represents operation modes, F set of piecewise
functions (local behaviors) and T set of transitions.

In the meaning of this tuple, the transition modeling algorithm takes
W,M,F and finds a symbolic representation of T , which describes the transi-
tion system between modes mn ∈M .

3.3.3 Problems in MMSR

Even though this algorithm generates a piecewise solution of even more
complex problems, it still does not consider the complexity of the original
function. There exist problems, where maintaining a shape of the original
function is more important than a numeric metric (like mean absolute error),
e.g. we need to preserve gradients of the original functions. In this case,
common metrics (MSE, MAE etc.) or criteria (AIC, BIC etc.) might not
be relevant for splitting the original functions into regions, and some other
mechanism for splitting the original function surface into simpler shapes may
be helpful.

Another principal insufficiency of this approach is a requirement for a time
series data. This requirement is needed especially in a Transitioning system,

12

...................................... 3.4. Summary

which depends on the system mode in previous time step. This, unfortunately,
limits the domain of application of this method. Nevertheless, the idea of
evolving a symbolic transition system can be generalized for any dataset.

3.4 Summary

The main drawback of the Local Model Methods (LMMs) described in this
chapter is their orientation primary on control tasks. This usually means, that
there is a requirement for a priori knowledge of the data or an ordered dataset,
like the time series data in MMSR. The requirements unfortunately limit the
application of these methods generally in SR problems. The LMMs, however,
contains few principles, that can be generalized under some conditions. An
example is a transitioning system designed in MMSR. This system is a
motivation for designing an evolutionary clustering approach, proposed in
next section, which divides the dataset into regions according to the complexity
of the dataset.

13

14

Chapter 4
Proposed Method

Preliminary experiments with standard GP methods for SR showed, that
finding a sufficient symbolic model with minimal error is strongly dependent
on the complexity of input dataset. Datasets sampled from functions with
complex surfaces, containing different kinds of artifacts are almost impossible
to fit with a precise model using GP approaches described in Chapter 2.
Having the dataset sampled from some function surface, such artifacts are
areas represented for example by jagged slopes, very narrow ridges or just a
plateau surrounded by steep slopes. This problem could be partially overcome
cutting such problematic areas out of the dataset and fitting them separately.
As the right approach could serve the Local Model Methods(LMN), which
are well-known approach from control systems area. The disadvantage with
the LMNs is however their strong orientation on control tasks, which make
them hardly applicable in the area of SR. The LMNs usually required a priori
knowledge about the problems or were not feasible for application due to
their computational complexity.

I propose a method which enhances the original GP approach in SR with
a utilization of some principles of local models methods. In the beginning,
it’s important to mention that the method requires that the finite training
dataset is topologically organized into a regular rectangular grid. This means
that the training points are equidistantly sampled along all input dimensions.
The method is not limited in the number of input dimensions, although the
descriptions and examples are mostly presented in 2D.

The method divides the training dataset into areas which are likely to be less
complex and fit the symbolic models on these piecewise datasets. Supposing
that the divided regions are less complex, the fitting process should also
produce more precise models. Fitting the separated areas containing different
kinds of artifacts may also be useful in interpretation and understanding of
these artifacts.

Figure 4.1 outlines the basic block scheme of the proposed method. It is
distributed into 3 main steps. The first one, clustering, divides the training
dataset into smaller subareas (partial datasets), which could be potentially
easier to fit. The learning step then takes the individual partial datasets and
fits a symbolic model on them. During the learning phase, some of the partial
datasets may also be joined together, if the compound model of these partial

15

4. Proposed Method...................................
Clustering

Learning

Merging

Partial Datasets

Piecewise symbolic models

Final compound model

Figure 4.1: Block scheme of the proposed method - The dataset is divided in the
clustering step. After then, piecewise models are learned on divided dataset. In
the merging step, piecewise models are joined together to form a single model.

datasets can be fitted with a reasonable error. If the two partial datasets
are joined together, they form a bigger partial dataset, which contains data
points from both of these partial datasets. The compound model is then
fitting this bigger partial dataset. The merging step then takes all of the
learned models and join them, so that they behave as a single model. The
steps of this method are described in following sections of this chapter.

4.1 Clustering

In the beginning, I consider necessary to define few terms, which may have
various meanings and will often be used in the following text. The first
important term, which has already been mentioned is training dataset or
also original dataset, where both terms have equal meaning and are usually
denoted as D. A n−dimensional training dataset is a predefined set of training
points in form

D = {(x1, y1), . . . , (xi, yi), . . . , (xm, ym)}

where xi ∈ Rn is an input vector in form < xi1 , . . . , xin > and yi ∈ R is a
target value. As mentioned in the introduction of this chapter, training points
are organized into a regular rectangular grid, what is also a requirement for
this method.

During the clustering phase of the algorithm, the training dataset is divided
into several subsets - clusters c1, . . . , ck, which cover areas that might be easier
to fit rather than fitting whole dataset at once. These clusters are subsets of
training points from training dataset D, such that each point belongs to one

16

...................................... 4.1. Clustering

and only one subset ci and
k⋃

i=1
ci = D.

Regarding the training points, it also necessary to define term neigh-
borhood of a training point, whereas this method usually works with an
8-neighborhood also called a Moore neighborhood and a grid neighborhood.
Having the training points organized into regular grid, a 8-neighborhood is
set of all points, which have Chebyshev distance to the point equal 1. The
grid neighborhood, which is used in merging methods, is described later and
example can be seen in Figure 4.8. For the purposes of clustering phase, we
will consider only 8-neighborhood.

As mentioned in the previous text, I described a complexity of the dataset
as the main problem of GP in SR and the main motivation for designing this
method. In order to find areas, which might be less complex, some objective
complexity measure has to be defined. As far as there does not exist any
conventional approach to evaluate the complexity of a dataset, I decided to
utilize a Gradient Vector Field (GVF) for dataset dividing purposes. As
known, GVF tells us how the function surface changes in every direction and
is calculated as partial derivate along each dimension. This also holds for
discrete datasets, where such numerical gradient in 2D training dataset is
calculated according to following formula

Gi,j = 0.5(Di,j+1 −Di,j−1)

Having a training point on i-th row and j-th column of 2D training dataset
organized into a rectangular grid, numerical gradient along the second axis
is calculated as a difference between output values of the training points
lying on the left and right of the current position. Using this formula, we
can calculate gradients for every training point in dataset and get the GVF.
Figure 4.2b shows an example of GVF calculated from the dataset sampled
from function in Figure4.2a . As we can see, points on the same slopes have
similar direction of the gradient. This also holds for points which lie on same
plateaus. In contrast, points in more complex areas such as areas with local
extrema have usually colliding directions of gradients. The idea of first 2
clustering approaches, described in this section uses this fact, and groups
neighboring points of similar gradient attributes like its direction or size, in
case of plateau, where gradient is equal 0.

In next sections, I will describe and propose 3 types of clustering approaches
used to divide the training dataset into subsets, which cover an area that
could be easier to fit. The first one is called spectral clustering and is based
on using well-known k-means algorithm in space of first K eigenvectors of
the similarity matrix.

The second clustering approach is more straightforward and tries to search
for connected components in the similarity graph, which is constructed from
similarity matrix.

The last approach utilizes evolutionary search using SNGP [7], which tries
to find a combination of nonlinear functions, which are used as a decision
boundaries to separate training points into distinct clusters.

17

4. Proposed Method...................................

30

20

10

0

-10-500

(a) Original function

-4
-20-2

-400

0
2 -30

4

-300

-200

-100

0

(b) Gradient Vector Field

-4
-3

-2
-1

0
1

2
3

4

-40

-30

-20

-10

0

10

20

30

40

Figure 4.2: Example of GVF. In the left image, there is a surface of the original
function, from which was training dataset sampled.

4.1.1 Spectral clustering

As mentioned, the idea is to split the dataset according to the GVF into
subsets, where training points in the same subset have similar gradient. I
assume that continuous area covered by training points with similar gradient,
might be easier to fit. The GVF could be translated into some similarity graph,
where nodes represent training points and edges represent similarities between
nodes. More specifically, weights of edges can numerically represent similarity
between 2 nodes. Such a graph can then be cut into several connected
components, so that nodes in the graph have high similarity. One approach
for finding such cuts and also components is called Spectral Clustering[18].
The only problem, which needs to be solved is a translation of the GVF into
graph structure. To achieve this, I create a similarity matrix storing angles
between points, which serve as a similarity measure. Process of creating such
similarity matrix is described in next paragraph.

The main advantage of the Spectral Clustering over other clustering ap-
proaches, is that it does not take any assumptions on the form or shape of
the clusters. As opposed to classic K-means algorithm, where clusters form a
convex sets, Spectral Clustering should be able to solve very general prob-
lems such as Intertwined spirals. According to [18] the normalized spectral
clustering algorithm can be described by the following algorithm

Algorithm 1 Spectral Clustering Algorithm
Input: Similarity matrix S, K number of clusters
Output: Set of clusters C = {c1, c2, ..., cK}, where ci is set of points from S

1: Construct similarity graph G from S
2: Compute (normalized) Laplacian Lsym

3: Compute first k eigenvectors of Lsym

4: Cluster the points in the space of eigenvectors using k-means algorithm
5: return C

18

...................................... 4.1. Clustering

Similarity matrix and graph

Given the dataset with m points, we can compute GVF using numerical for-
mula mentioned before. For n-dimensional input space, we get n components
of gradient vector for each point. The similarity between 2 points (or nodes)
is then calculated as an angle between these gradient vectors in these 2 points.
Having the m training points forming a rectangular grid, a similarity matrix
S, will be a matrix of m×m points, where:

Sij =
{

0 if j is not in 8-neighbourhood of i
180− αgi,gj otherwise

where Sij is an element of similarity matrix on i-th row and j-th column,
αgi,gj is an angle between gradients in points i and j, calculated using a
dot product of vectors. Subtracting the angle from 180 means that similar
neighboring gradients have high similarity.

The similarity graph is constructed from a similarity matrix, so that each
point in dataset corresponds to individual node in a graph. Nodes i and j
are connected, if value in a similarity matrix Wij > threshold, where the
threshold parameter is arbitrarily selected. An example of such similarity
graph can be seen in Fig. 4.3a, which correspond to function surface displayed
in Figure 4.2a.

First K eigenvectors

The main idea of spectral clustering is to utilize eigenvectors and eigenvalues
(spectrum) of a similarity matrix to reduce the input space dimension and
cluster the dataset in the reduced space. The eigenvectors and eigenvalues
can be calculated using similarity matrix and graph Laplacian. Selecting the
proper K for a number of clusters is a tricky task and there were proposed
several methods to solve this problem such as methods based on stability
approaches [19], information-theoretic perspective [20] or eigengap heuristic
[18]. The proper number of clusters can also be estimated visually, from the
shape of a function, in case of space with lower dimension.

4.1.2 Simple Clustering

Having the similarity graph created in the same way as in Section 4.1.1,
this approach searches the whole graph for connected components using
a Breadth-first search (BFS). The algorithm looks for nodes with highest
degree (connectivity), which are perspective to be a part of bigger connected
component (line 4 in Algorithm 2). The algorithm then recursively traverses
all nodes (in similarity graph) that are connected to the selected node and
adds them to the same cluster (lines 6-12). When there is no other nodes
connected to currently expanding cluster, the search is restarted, nodes in
cluster removed from a graph and a new empty cluster is initialized. When
K−1 clusters are created, the remaining nodes are all put into the last cluster
(lines 15-17), which ensures that all nodes are assigned to cluster. The output

19

4. Proposed Method...................................
of the algorithm is set of at most (K-1) connected components in similarity
graph and single cluster merging isolated areas.

Algorithm 2 Simple Clustering Algorithm
Input: Similarity graph G, K number of clusters
Output: Set of clusters C = {c1, c2, ..., cK}, where ci is set of points from G

Initialization :
1: C = ∅
2: Queue Q = ∅

BFS Search
3: while C.size ≤ (K − 1) and G is not empty do
4: Find node with highest degree in G and add to Q
5: currCluster = ∅
6: while Q is not empty do
7: current = Q.dequeue()
8: currCluster.add(current)
9: N = neighbors(current) - neighbors according to G

10: Q.enqueue(N)
11: Remove current from G
12: end while
13: C.add(currCluster)
14: end while
15: if G is not empty then
16: C.add(G)
17: end if
18: return C

The outcome of the procedure applied on the similarity graph in Fig.4.3a
can be seen in Fig.4.3b. It is important to add, that similarity graph and also
resulting clustering is thus strongly dependent on the choice of the threshold
value of an angle between 2 gradient vectors.

4.1.3 Evolutionary Hierarchical Clustering (EHC)

This evolutionary clustering approach does not only divide the data into
separate clusters, but also constructs a splitting function, or better said a
combination of functions, which split the input space into smaller subareas,
where the fitting of the original function should be easier. This approach is
analogical to [13], where authors look for hierarchical decomposition of the
input space into operating regimes. The difference between our approach and
[13] is in a usage of nonlinear function (such as Gaussian, Hyperbolic Tangent
etc.) used to find a boundary between clusters.

The idea of this algorithm is also captured in Figures 4.4 and 4.6. In first
figure, we can see a dataset organized into a rectangular grid and functions
f1, f2, f3 which are dividing or splitting functions mentioned also in Figure
4.6. Original dataset is first divided by function f1 into positive and negative

20

...................................... 4.1. Clustering

-3 -2 -1 0 1 2 3

-30

-20

-10

0

10

20

30
Graph

(a):

-4 -3 -2 -1 0 1 2 3 4

-30

-20

-10

0

10

20

30

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

(b):

Figure 4.3: (a)Similarity graph based on angles between gradient vectors. The
training dataset and gradient vector field is the same as in Figure 4.2.
(b)Outcome of simple clustering algorithm.

-4 -3 -2 -1 0 1 2 3 4

-30

-20

-10

0

10

20

30
f1

f1

+
+

-
-

f2+
+

--

+

+
-

-
-

f3

f3

Figure 4.4: This figure visually captures the idea of EHC algorithm. Training
dataset is hierarchically split into multiple partial datasets. Splitting function f1
divides the dataset into positive (marked with red +) and negative (-) partial
datasets. Functions f2 and f3 does the same recursively on partial datasets from
f1.

areas marked with plus and minus signs respectively. These parts are next
divided by functions f1 and f2, which split the dataset into smaller partial
datasets. These partial datasets represent clusters in final.

In order to find such functions, I utilized a recent genetic programming ap-
proach called Single Node Genetic Programming (SNGP) [7, 8] also described
in Section 2.3. The main idea of the evolutionary cycle in this approach is
to evolve new population of candidate functions, split the dataset according
to these functions and try to fit both parts separately, using only simple
operators (features) like plus and multiplication. If the error on the divided

21

4. Proposed Method...................................
BFS

SNGP

PopulationEvaluation

Figure 4.5: Scheme of the EHC algorithm. The BFS search models generated by
SNGP. SNGP uses custom Population Evaluation method to evaluate candidate
solutions.

datasets is smaller than error on complete dataset, the splitting function is
accepted. A lesser error using only primitive operators also means, that the
shape of divided surfaces should be less complex than the original one and
may be easier to fit.

However, this basically means running 2 nested instances of genetic pro-
gramming at once. The first one would search for splitting function and
the second one would be used for evaluation of each splitting function in
population. This approach is too computationally expensive, and I decided
to simplify an evaluation step a bit. This simplification is described later in
this chapter.

Because of the complexity, it would be problematic and confusing to
describe whole algorithm in a single block. Due to this, Figure 4.5 displays
the organization of the algorithm in a block scheme. At the top, there is a
breadth-first search (BFS) utilized, which hierarchically distribute dividing
functions and training dataset. Each step of the BFS contains a single SNGP
run, which evolves new populations of dividing functions and is described in
detail in Section 2.3. The only difference from original SNGP approach here
is a custom fitness function, which is described by Population Evaluation
step. In this step, instead of directly calculating fitness of the nodes, training
dataset is divided according to dividing function encoded in the node and
divided parts are fitted using previously mentioned LASSO regression. The
precision of this fit estimates the complexity of partial datasets and evaluates
fitness of the dividing function.

Following paragraphs describe subtasks of this algorithm.

BFS

The idea of this subtask is simple, we want to find a hierarchically ordered
functions f1, ..., fn, such that f1 will split input space into 2 not necessarily
connected areas called positive and negative areas. Function f2 and f3 then
recursively splits the positive and negative areas, respectively, into 2 subareas.
The idea is illustrated in Fig. 4.6. The search continues until the desired

22

...................................... 4.1. Clustering

f1

f2

y1>=0

f3

y1<0

f4

y2>=0

f5

 y2<0

f6

 y3>=0

f7

 y3<0

Figure 4.6: Hierarchical function distribution

number of splitting functions, or the number of clusters is found, which is
equal to the number of leaf nodes in a search tree.

Algorithm 3 EHC-BFS
Input: Dataset D, maximal level M
Output: Hierarchically distributed functions {f1, ..., fn}

Initialization
1: i = 1
2: Queue = ∅
3: root = new SNGP population with complete dataset D
4: Queue.enqueue(root)

Search
5: while Queue is not empty and current level < M do
6: current = Queue.dequeue()
7: fi = current.solve() - complete SNGP search
8: Dpos, Dneg - split current dataset according to evolved function fi

9: Create new SNGP nodes where nodepos receives only Dpos and nodeneg

only Dneg

10: Queue.enqueue(nodepos, nodeneg)
11: i += 1
12: end while

Algorithm 3 (EHC-BFS) thus starts the search in a root node corresponding
to function f1. The training dataset is then split into 2 parts corresponding to
positive (f1(X) >= 0)) and negative ((f1(X) < 0)) examples on line 8. After
that, new search node are created and initialized with only the positive, or
negative dataset part respectively (lines 9,10). The search process continues
as standard BFS search until all leaf nodes at level M are created. Looking
at the Fig. 4.6, we can see 4 splitting functions at the last level of the tree.
Each of these functions also splits the corresponding partial dataset, that was
propagated to it from previous nodes, so at final, we get 8 partial datasets
corresponding to 8 clusters.

23

4. Proposed Method...................................
Population Evaluation

The main idea behind clustering in our approach is to split the training dataset
and its surface into separate areas, which could be easier to fit using symbolic
regression. In the previous clustering approaches, I utilized function GVF and
separated areas with colliding vectors. In evolutionary clustering approach, I
try to fit the divided areas with simple features, which usually have simpler
surface. Finding such combination of features could be done using SNGP,
but it is too complex. Because of this complexity, the population evaluation
is limited to search only a small set of linear and quadratic features, which
in 2-dimensional input space means {x1, x2, x1x2, x

2
1, x

2
2}. More formally, we

are looking for a function

g(x1, x2) = a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2 + a0

and the task is to estimate the coefficients a1, .., an such that MSE of this
function on current part of dataset is minimal. In order to find such coefficients,
I utilize a Lasso Regression search [5].

To evaluate a population of SNGP splitting functions, we thus first split
the dataset into positive and negative regions according to each candidate
function, where output of the function is fi(x1, x2) >= 0 in positive region.
We estimate parameters of function g on both parts of dataset and a final
fitness is calculated according to

fitness =
E2

positive + E2
negative

|dataset|

, which is basically the MSE of the dataset.

4.2 Hierarchical learning

The first principal problem with clustering is a selection of the proper number
of clusters, which is closely related to solved problem. There are some
approaches to estimate the optimal number of clusters, like eigengap heuristic
[18], but these are hardly applicable in this problem. I thus decided to try
another approach, that may start with a relatively higher amount of smaller
clusters and merge compatible clusters together, if performance of the merged
supercluster is not worse than the mean performance of single clusters alone.
This approach is described by Algorithm 4 (Hierarchical Learning).

24

................................. 4.2. Hierarchical learning

Figure 4.7: Example of simple neighborhood search tree

25

4. Proposed Method...................................
Algorithm 4 Hierarchical Learning
Input: Set of clusters Cstart = {c1, c2, ..., cK}, Maximum supercluster size

max_depth
Output: Set of clusters and superclusters Cend = {c1, c2, ..., cR}, Set of

models M = {m1,m2, ...,mR}
Initialization :

1: Cend = ∅
2: Queue Q = ∅
3: TABUglobal = ∅

Preparation
4: Train models for all simple clusters ci ∈ Cstart

BFS Search
5: while Cstart is not empty do
6: root = Random starting cluster ci ∈ Cstart

7: winner = root
8: Q.enqueue(root)
9: while Q is not empty do

10: current = Q.dequeue()
11: N = neighbors(current) - neighboring clusters to current, such that

each of neighbors ci ∈ Cstart, and current∪{ni ∈ N} /∈ TABUglobal

12: for all ni ∈ N do
13: Create joint cluster Cjoint of all simple clusters {ci ∈ current}∪ni

14: model = train joint model for Cjoint

15: if msemodel <= (1 + ε)
∑

ci∈Cjoint
msemodelci

|ci|

|Cjoint| then
16: Q.enqueue(Cjoint)
17: if |Cjoint| > |winner| then
18: winner = Cjoint

19: end if
20: else
21: TABUglobal.add(Cjoint)
22: end if
23: end for
24: end while
25: Cend.add(winner)
26: Cstart.remove(winner) - winner is a superset of simple clusters
27: end while
28: return Cend

On the input of the algorithm, we have K clusters, represented by partial
dataset files created from original dataset, and also selected limit for a
depth of a search tree. The output of the algorithm will then contain an
assignment of input clusters to superclusters, which in general can contain
from one to K input clusters. In addition, each of these superclusters has a
learned symbolic model, evolved using SNGP (Section 2.3). Lines 4 in the

26

............................... 4.3. Piecewise models merging

algorithm 4 is important because of the comparison criteria on line 15, where
we compare MSE of currently evolved supercluster and the MSE of single
clusters contained in the supercluster, but trained separately. There is also
some little threshold value ε, accepting also not strictly better superclusters.
To save resources, we thus precalculate the errors on the single clusters in the
initialization phase. The loop starting on line 9 is a BFS search traversing a
tree such as the one in Fig. 4.7. The most important part of the algorithm
takes part on lines 11-21. For a currently selected cluster or supercluster, we
create a new node for each neighboring clusters, which corresponds to the
union of the current node and a neighbor. After that, a symbolic model is
trained for every new node, which does not contain a combination of clusters
contained in a global TABU list. The global TABU list important, because
it allows us to prune not perspective combinations of clusters early, without
actually learning them, what saves computational resources.

When the model for a supercluster is trained, its performance is compared
to the performance of a model created of separately trained models on single
clusters, and if it’s worse, corresponding cluster combination is appended to
the global TABU list. The best supercluster is then not selected according to
its MSE, which must be better than single clusters, but according to the size
of a dataset which it covers.

When a winning supercluster is found, or a search tree depth limit is
reached, clusters (and also data points) contained in supercluster are removed
from the search, and it’s restarted. The search process continues until no
cluster is left in input cluster set. A simple example is seen in Fig. 4.7.

4.3 Piecewise models merging

Suppose we have training data distributed into clusters (or superclusters)
and each cluster has learned corresponding symbolic model using SNGP. The
task now is to merge models together, so that they work as a single model.
The first appearing problem seems to be a classification of unseen data and
assignment of models, which evaluate it. Another problem seems to be data
points which lie on the borders of 2 or more cluster (models). In this situation,
we cannot simply pick a single model randomly, because it would cause a
discontinuous transition on borders. This problem can be partially overcome
including these bordering areas in training datasets, but this solution may
not work perfectly. Following sections propose and discuss some approaches
which are suitable for solving these issues.

4.3.1 Labeling unseen data

As mentioned, there is a principal problem with assigning labels to unseen data.
For example, in Section 3.3.1, authors of CSR utilize the transitioning system,
which detects when time series input switches between 2 clusters (models).
Such a transitioning system would be unfortunately hardly applicable with
multidimensional or unordered data. I’ve partially overcome this issue in

27

4. Proposed Method...................................

-4 -3 -2 -1 0 1 2 3 4

-30

-20

-10

0

10

20

30

Figure 4.8: Example of 4-nearest grid neighbors

Section 4.1.3, where the symbolic representation of splitting functions are
evolved. The principle is a generalization of the CSR transitioning system.
Classification of unseen data can be then found analogically to splitting the
dataset with EHC.

Despite that, there is still need for a solution because of spectral a simple
clustering.

As the most straightforward approach, we can utilize slightly modified
K-nearest neighbors search. Having the training data forming a grid in a 2D
space, we are not looking for 4-nearest neighbors in the means of the distance
function, but 4-nearest points enclosing a grid field, in which the point lies.
The idea is visualized in Fig. 4.8, where the + sign is a position of input
point and same color squares are nearest neighbors. The distance between 2
neighboring points in the grid is normalized to value 1. The input point is
then classified as the majority of its neighbors. In case 2 neighbors are from
the first cluster and the other two from the second, final cluster is assigned
randomly between the two.

4.3.2 Merging method 1

The main idea of the first merging approach is to evaluate input points lying
in bordering areas (between cluster) proportionally, according to the precision
(error) of bordering models. This method requires calculating the errors on
each of the training points in advance.

The input of the algorithm contains the training dataset points, trained
models, errors of these models and the input which need to be evaluated. The
training dataset points are necessary to calculate nearest neighbors and assign
corresponding models. In the initialization phase of the algorithm on line 1 of
Algorithm 5, the errors are normalized, so that they fulfill partition of unity
property. These normalized errors are then converted to precisions and used

28

............................... 4.3. Piecewise models merging

for a weighting output of each model to which input point corresponds. It’s
also important to mention, that error, normalized error and the precision of
model, to which the input point does not belong should be 0. The conversion
from error to precision means, that models with higher error should have
lower precision and vice versa.

Line 4 of the algorithm utilize precision on the nearest training point for
output weighting. It can be easily extended to utilize precisions of multiple
nearest neighbors, so that we average precisions on all of these neighbors and
normalize it, so that it satisfies partition of unity property.

Algorithm 5 Merging method 1
Input: Training points D size m × n, Trained Models {f1, ..., fk}, Errors

errD size m× k, Input point(s) Inp size r × n
Output: Output Out size r × 1

Initialization
1: normalize and convert errD to precisionD, so that

∑k
j=1 precisionij =

1, for i = 1..m
Calculate output

2: for i = 1 ... r do
3: y= empty 1× k array
4: prec = precisioni, where i is nearest neighbor in D
5: for j = 1 ... k do
6: yj = fi(Inpi)
7: end for
8: Outi = prec× y
9: end for

Algorithm 5 can be better understood on following example, which is also
visualized in Figure. We have random input point (red plus in figure), original
training data points (black dots) and errors of the models on these training
points. We first get the nearest neighbor(s) of input point in a set of training
points, which is marked with a red square in the figure. After that, we
calculate output value as a weighted sum of outputs of all models this training
point. The weights of the models are calculated so that model that has better
precision, has higher value. The figure shows that difference between desired
output and output of the first model, on this training point, was 90. The
second model had error equal 10. This thus means, that model 2 is more
precise and will have 90% contribution in new input point. If nearest training
data point does not belong to some cluster(model) i, and also does not border
with this cluster, the error and also weight corresponding to model i is 0.
Also node that

∑numClusters
i=1 precisioni = 1.0. Due to this, the precisions will

be precisionf1 = 0.1, precisionf2 = 0.9.

29

4. Proposed Method...................................

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

ne
ar

es
t

|d - y
1
| = 90

|d - y
2
| = 10

y = 0.1 f
1
(x) + 0.9 f

2
(x)

Figure 4.9: Example of merging 1 algorithm. Algorithm first finds the nearest
training point and then weighten outputs of all models on current input point
according to precision of these models on nearest training point.

4.3.3 Method 2

In this clustering approach, all input points receive only single cluster assign-
ment, and the output is calculated according to the model corresponding to
the cluster. The cluster assignment is not dependent on distance to training
points, which are already classified, but on their cluster assignment.

The input of the algorithm contains training data points, trained models,
input and K, which is selected number of neighbors, included in cluster
assignment. The algorithm goes through all input points and for each one
finds K nearest neighbors in training dataset, which can be found according
to the distance or grid neighbors method mentioned earlier. All of these
neighbors already have at least one cluster assignment from preprocessing
phase. In case of points lying on borders of 2 clusters, single point is assigned
both of these clusters. In final, the algorithm selects the cluster, which has
the most occurrences within neighbors and input point is evaluated according
to model corresponding to this cluster. In case of 2 clusters, which has the
same number of occurrences, the final cluster is picked randomly from these
two.

30

............................... 4.3. Piecewise models merging

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Cluster 1
Cluster 2
Cluster 3
Input point
Grid neighbors

assigned to Cluster 1

y = f
1
(x)

Figure 4.10: Example of merging 2 algorithm. Algorithm first finds grid
neighbors of input point and then assigns a cluster, which is dominant among
the grid neighbors.

Algorithm 6 Merging method 2
Input: Training points D size m × n, Input point(s) Inp size r × n, K,

Trained Models {f1, ..., fk}
Output: Output Out size r × 1

1: for i = 1 ... r do
2: neigh = get K nearest neighbors of Inpi in D
3: get cluster assignments of neigh
4: Outi = fj(Inpi), so that j is cluster, with max occurrences in neigh
5: end for

This merging algorithm is also visualized in Figure 4.10. The training
points form a square grid and are assigned to clusters, which are visualized
by special symbols like dots and diamonds. Next, there is a random input
point marked with red plus sign and its grid neighbors, which are marked
with red squares. As we can see, blue dots are dominant among neighbors,
so input point is assigned to the first cluster. The output is then calculated
according to model f1, which corresponds to cluster 1.

4.3.4 Method 3

The last merging method is based on utilizing standardized euclidean distance
as a weighting factor in calculating output from multiple models. The
standardized euclidean distance measure normalizes distances between 2
neighboring grid nodes to value 1 in all dimensions. The main idea of the

31

4. Proposed Method...................................
algorithm in opposite to previous approaches is not to assign a cluster to
input point, and calculate output according to specific model, but to make
a weighted average of the outputs in neighboring points, so that transitions
between 2 models will be more continuous.

On the input, there is again an original training data with already assigned
clusters from preprocessing phase, input points and trained models. In the
initialization phase, there is a constant MAXDIST for a maximal distance
of an input point to any grid neighbor. Because all examples are held in 2D
and distances are normalized, this constant is equal to square root of 2, what
is the maximal distance in square with unit side length. This constant can
however differ in higher dimensions.

There can basically occur 2 situations which are treated separately, in
opposite to previous approaches. The first one happens, when all grid
neighbors belong to the same cluster. In this situation the input point is
evaluated according to the same model as the grid neighbors are. On the
other hand, when there are neighbors from different clusters the output is not
calculated directly from the input, but from the output of the neighbors as
seen on lines 8-13 in Algorithm 7. The output of the neighboring grid nodes is
weighted according to the distance of the input point to these neighbors. This
should ensure, that final compound model will contain continuous transitions
between 2 submodels. There can occur one exception, when the input point
lies too close to some grid point (training point). In this situation, when the
distance is smaller than some threshold value, the output of the model is
calculated directly from the input point according to the cluster assignment
of the neighboring point.

In Figures 4.11 and 4.12, you can see visual examples of the two mentioned
cases, which can occur. In Figure 4.11, the output is calculated directly from
the input, because all neighbors belong to the same cluster. The second case
in Figure 4.12 is more complicated. Output is a weighted sum of models,
corresponding to cluster assignment of each grid neighbor. Weights in this
example are calculated according to following steps:..1. Calculate distances between input point and grid neighbors distp1 , . . . , distp4..2. Distances are subtracted fromMAXDIST =

√
2, and we get vector with

4 components: W = [
√

2− distp1 ,
√

2− distp2 ,
√

2− distp3 ,
√

2− distp4]..3. Vector is normalized W i
norm = Wi∑4

i=1Wi

, so that
∑4

i=1W
i
norm = 1.0

At the end, outputs of grid neighbors (using corresponding models) are
weighted and summed, giving output value to the input point. The output is
characterized by equation y = 0.3f1(p1) + 0.3f2(p2) + 0.2f3(p3) + 0.2f2(p4)
in Figure 4.12, where f1, . . . , f4 are trained models and p1, . . . , p4 are grid
neighbors from training dataset.

32

............................... 4.3. Piecewise models merging

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Cluster 1

Cluster 2

Cluster 3

Input point

Grid neighbors

y = f
1
(x)

CASE 1

Figure 4.11: Visualization of the first case of Merging 3 algorithm. All grid
neighbors belong to the same cluster, co output of input point is calculated
according to corresponding model.

Algorithm 7 Merging method 3
Input: Training points D size m× n, Input point(s) Inp size r× n, Trained

Models {f1, ..., fk}
Output: Out size r × 1

Initialization
1: W = empty matrix of weights size rx4
2: MAXDIST =

√
2

3: for i = 1 ... r do
4: w - empty vector of weights for each neighbor
5: neigh, dist = get 4 nearest grid neighbors (in 2D) of Inpi in D and its

distance to them
6: if all neighbors are from same cluster then
7: Outi = fn(Inpi), where fn is model corresponding to cluster of

neighbors
8: else
9: y = calculate output on neigh according to their cluster assignment

10: for j in neigh do
11: wj = MAXDIST − distj
12: end for
13: normalize w so that

∑4
i=1wi = 1

14: Outi = y × w - dot product of y and w
15: end if
16: end for

33

4. Proposed Method...................................

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Cluster 1

Cluster 2

Cluster 3

Input point

Grid neighbors

CASE 2

dist = 0.58

0.58

0.87

0.87

p
1

p
2

p
4

p
3

y = 0.3f
1
(p

1
) + 0.3f

2
(p

2
) + 0.2f

3
(p

3
) + 0.2f

2
(p

4
)

Figure 4.12: In the second case of Merging 3 algorithm, the input point lies
on border of multiple clusters. At first, euclidean distances to grid neighbors
are calculated. After that, distances are translated to weights and output is
calculated as a weighted sum of outputs of grid neighbors.

4.3.5 Model merging in hierarchical models

In merging models from hierarchical learning method mentioned in Section
4.2 the situation is a bit different. All of the previous merging approaches
have to be adjusted, so that in the initialization phase of the algorithm, they
re-label training data according to hierarchically learned partition. Term
partition here means the grouping of the elements (clusters) of some set into
non-empty subsets (superclusters), so that each element occurs in one and
only one subset. The superclusters are then handled as normal clusters with
the learned model.

34

Chapter 5
Experiments

To test the performance of the proposed method and compare it with existing
approach, I have selected few practical and also artificial Symbolic Regression
problems. Since the method is more complex, and consists of multiple
parts which are clustering, hierarchical learning and merging, I considered
important to test these parts separately. Hence I will propose 2 experiments,
where I first compare mentioned clustering approaches and then evaluate the
performance of the whole method with the state-of-the-art implementation of
the Single-run SNGP with LASSO regression.

5.1 Setup

For the experimental purposes, I selected few practical problems related to
reinforcement learning and also datasets sampled from artificial benchmark
functions. Table 5.1 overviews parameters of the experimental datasets
and also sources, from which they were created. First three datasets were
generated from reinforcement learning problem, sampling the V function
and Policy respectively. Data of Fun1 and Fun2 were sampled from analytic
function described by equations 5.1 and 5.2 respectively. All datasets in
experiments have 2 input variables. Ranges of the input and output variables
are included, to help the reader make a rough estimate of an error magnitude
on these datasets.

Note that all datasets are evenly sampled, which means they are organized
into a regular rectangular grid, as mentioned in previous chapter. This data
organization is required by some of the clustering and merging approaches.

Figure 5.1 shows the 1DOF Swingup and Robot Arm Policy datasets.
Figure 5.2 visualizes 1DOF Swingup policy dataset, which is obviously very
challenging for original GP approaches due to many surface irregularities it
contains. At last, Figure 5.3 visualizes surfaces of custom functions generated
by formulas 5.1 and 5.2. I selected these problems, because all of these datasets
contains artifacts that are very challenging for common GP approaches. Such
artifacts are for example transitions between steep slopes and saturated
plateaus as seen in 5.2, or the irregular shapes of plateaus in the same Figure.
Robot Arm Policy contains also very challenging artifact in form of jagged
slope seen in Figure 5.1, which is almost unsolvable for approaches learning

35

5. Experiments
Name #Vars #Samples X1 range X2 Y

1DOF Swingup X1, X2 81× 81 < −π, π > < −30, 30 > < −43, 0 >

1DOF Policy Swingup X1, X2 61× 61 < −π, π > < −30, 30 > < −2, 2 >

Robot Arm Policy X1, X2 37× 37 < −π, π > < −30, 30 > < −10, 10 >

Function 1 X1, X2 31× 31 < 0, 1 > < 0, 1 > < −1, 1 >

Function 2 X1, X2 31× 31 < 0, 1 > < 0, 1 > < −2, 2 >

Table 5.1: Experimental datasets overview.

-45

-40

30

-35

-30

20

-25

-20

3

Y

10

-15

2

(a) 1DOF Swingup

X2

-10

0 1

-5

X1

0

0
-10

-1

-20 -2

-3
-30

-10

-3

-5

-2

0

Y

-1

5

X1

0

10

1

(b) Robot Arm Policy

2
40

X2

20
03

-20
-40

Figure 5.1: Visualization of 1DOF Swingup dataset (a) and Robot Arm Policy
dataset (b).

on complete dataset. I assume that HL approach proposed in the previous
chapter could be capable of learning these artifacts, because of the learning
process, which is focused on local domains.

Fun1 = x2
1cos(10x1 − 15x2) (5.1)

Fun2 = (x1−1)2cos(10(x1−1)−15(x2−1))−(x2−1)2sin(10(x1−1)+15(x2−1))
(5.2)

As explained in previous chapter, the proposed method utilizes 2 different
instances of SNGP learning. First one in case of Evolutionary Hierarchical
Clustering and the second one in case of Hierarchical Learning. Table 5.2
overviews unique properties of both SNGP runs, which are number of inde-
pendent runs, maximal number of generations within each run and also basic
functions sets. Maximal feature size limits each new feature to contain at
most 5 basic functions. Properties Predictors and Regressors are described in
Section 2.3.5.

36

................................ 5.2. Clustering Experiments

-2

-1.5

30

-1

20

-0.5

0

10

0.5

2

(a) 1DOF Swingup Policy

1

X2

0

1.5

X1

0

2

-10

-20
-2

-30

-3 -2 -1 0 1 2 3

X1

-30

-20

-10

0

10

20

30

X
2

(b) Other perspective

Figure 5.2: Visualization of 1DOF Swingup Policy dataset. Right image provides
another perspective, to show irregularities in the dataset surface.

-1

1

-0.8

-0.6

0.9

-0.4

0.8

-0.2

0.7

0

Y

1

0.2

0.6

0.4

X2

0.80.5

0.6

0.4

0.8

0.6

X1

1

0.3
0.4

0.2

0.20.1

0 0

-2

1

-1.5

0.8

-1

1
0.6

X2

0.8

-0.5

0.4
0.6

Y

X1

0

0.4

0.2

(b) Fun2

0.2

0.5

0 0

1

(a) Fun1

Figure 5.3: Custom analytic functions visualization. Original formulas are
described in the text.

5.2 Clustering Experiments

The goal of the experiments with clustering is to compare approaches described
in Chapter 4.1. I have performed 10 runs with all clustering approaches. In
case of EHC, the setup parameters are shown in Table 5.2. All experimental
datasets are clustered into 8 clusters. A higher number of clusters also influ-
ence computation complexity of the HL method. Each experimental dataset
also requires custom setting of threshold parameter in Simple Clustering.
This parameter, as mentioned in method description in Section 4.1.1 is used
for construction of similarity graph.

The results showed, that the outcome of simple clustering algorithm is very
consistent and results differ only in few data points. The spectral clustering
algorithm usually results in smaller clusters as can be seen for example in

37

5. Experiments
EHC HL

#Runs 10 30

#Generations 15000 50000-10000

{+,−, ∗, pow2, pow3, {+,−, ∗, pow2,Basic functions
set pow4, pow5, Bent} pow3, pow4, Gauss}

Max feature size 5 5

Population Size 200 300

#Predictors 50 50

#Regressors 5 5

Table 5.2: SNGP Parameters setup

figure 5.4, but their position differs minimally in distinct runs. The EHC,
similarly to Simple clustering usually evolves very similar results in all runs.
Figures 5.4, 5.5, 5.6, 5.7 and 5.8 show clustering on the experimental datasets,
where the specific run was selected randomly. This because the differences
between outputs were not so significant.

As far as there is no objective measure to compare clustering approaches, I
only provide visual comparison of these methods. I will return to this topic
and analyze these methods in the end of this chapter, because an impact of
these methods on the final outcome of the proposed method can be evaluated
only after running all phases of the method.

5.3 Experiments with proposed method

In order to compare the performance of the proposed method against standard
SNGP approach, I performed 30 independent runs of Hierarchical Learning
method on each type of clustering, mentioned previously. To test SNGP, I
performed 30 independent runs of the SNGP implementation [9], on complete
dataset, which was used for clustering. As described, I have 5 different types
of datasets of various properties. All HL instances had limited maximal tree
depth to 3. This basically means, that in each run, there could be joined at
most 3 simple clusters in a single supercluster. The number of generation
also varied, depending on the complexity and size of a dataset. In case of
custom functions (Function 1 and 2) there were only 50000 generations. 1
DOF Swingup required 100 000 generations per run. This however does not
mean, that method wouldn’t produce reasonable results in fewer generations.

After running Hierarchical Learning, I utilized merging approaches from
Section 4.3 to create a single model and measured the statistical values on
this model. Outcomes of the experiments can be seen in Tables 5.3, 5.4,

38

...........................5.3. Experiments with proposed method

Figure 5.4: Visual comparison of clustering approaches on 1DOF Swingup
problem. The threshold parameter for Simple Clustering is set to 172.

Figure 5.5: Visual comparison of clustering approaches on 1DOF Swingup Policy
problem. The threshold parameter for Simple Clustering is set to 110.

39

5. Experiments

Figure 5.6: Visual comparison of clustering approaches on Robot Arm Policy
problem. The threshold parameter for Simple Clustering is set to 175.

Figure 5.7: Visual comparison of clustering approaches on custom Fun1 problem.
The threshold parameter for Simple Clustering is set to 170.

40

...........................5.3. Experiments with proposed method

Figure 5.8: Visual comparison of clustering approaches on custom Fun2 problem.
The threshold parameter for Simple Clustering is set to 170.

5.5, 5.6 and 5.7. The tables are organized, so that rows present individual
merging approaches and columns present clustering methods. Value of the
cell corresponds to mean and best MSE, respectively. In case of standard
SNGP approach, there is only single value for all 3 merging methods, because
the merging step was skipped. In each table, the value written in bold is
considered the best. Values marked with * are considered significantly better
than values of all other approaches, according to the two-sample t-test with
5% significance level.

To objectively evaluate these runs, I measured mean and minimal values of
the Mean Square Error (MSE) on these runs. Figures 5.9, 5.10, 5.11, 5.12
and 5.13 show the visual comparison of the best run of standard SNGP and
HL. The best run is selected according to the best combination of clustering
and merging approach in results tables. The figures are organized so that
Figure a) shows the original dataset, b) shows the model produced by SNGP
and c) model produced by HL.

5.3.1 Evaluation and Analysis

As can be seen in tables, proposed method successfully outperform the
standard SNGP approach in all experiments. To support this statement, I
performed the two-sample t-test between results of the best approach with
respect to mean MSE, and all other approaches. In case of Fun2 dataset, the
result is not significantly better than the other merging approaches, but EHC

41

5. Experiments
in general performed significantly better than all other approaches. In case of
1 DOF Swingup policy, there is no merging approach better than any other
in simple clustering, but again, all merging approaches are better than the
SNGP.

The only case, where mean MSE of SNGP wasn’t the worst is the ex-
periment with Robot Arm Policy, where first merging approach produced
excessively bad results in case of Spectral Clustering algorithm. There has
to be considered the fact, that the surface of the dataset (Figure 5.1) is not
that complex in the meaning of MSE, which means that the standard SNGP
performs well. Closer examination of the surface however reveals several
artifacts, such as jagged slopes and steep transition between plateau and
slope. These artifacts are ignored by standard SNGP. The problem with the
combination of Spectral Clustering and Merging 1 technique in case of this
dataset is the distribution of clusters, which created simple clusters in the
area of plateaus and left the complex parts in single cluster. In addition to
this, there occur uneven transitions between the clusters covering plateaus
and cluster covering complex area, which result in an additional error.

Despite the Robot Arm Policy dataset, the proposed method was able to
beat SNGP in all other instances with all combinations of clustering and
merging approaches. One more interesting case occurs in the 1 DOF Swingup
Policy, which seemed the most challenging for fitting. As can be seen in
Table 5.6, the best approach seems to be Simple clustering, which performs
well with any merging method. The MSE of this approach is however only
twice as good as the standard SNGP is. Such a result suggest that using
standard SNGP might be reasonable in the meaning of computation time
and complexity, however visual evaluation of the two approaches displays
huge difference. Figure 5.12 displays the best runs of both approaches. As
can be seen, standard SNGP succeeded in fitting the basic shape of surface,
so that local optima are placed well, however provides much less detail than
Hierarchical learning. It also ignores specific artifacts of this dataset, such as
slopes, which are not smooth but contains several jags. The standard SNGP
also ignores the irregular shape of plateaus.

The same situation can also be seen in Figure 5.13, comparing Robot
Arm Policy experiment, which contains artifact in form of jagged slope. The
ignorance of such types of artifacts suggests, that standard objective measures
like MSE and MAE might be insufficient for fitting complex datasets, due
to global evaluation. This means that when an artifact is covered by few
samples, or range of its function values is unimportant compared to global
range, it is usually ignored. This also means that when one model fits the
artifact better but also fits other areas worse than the other model, it is
usually rejected. The effect of this problem is the most visible on problems,
which require much better detail of fitting.

We can see, that the results (visual and also numerical) are strongly
dependent on the selection of the clustering and merging approach. Where in
case of merging, the results are usually similar, so that Merging 3 approach
usually slightly outperforms Merging 2 and more significantly the Merging 1

42

...........................5.3. Experiments with proposed method

approach, the clustering seems to be very problem dependent. Looking at the
1 DOF Swingup experiment, we can see that Simple Clustering is significantly
outperformed by EHC. One possible reason for this situation might be the way
how Simple Clustering handles local optima and in case of 1 DOF Swingup
also a long ridge crossing the surface. Where the EHC always looks for
function, which "simplifies" and divides the dataset, Simple Clustering looks
for the maximal possible cluster (in number of points), looking only at the
gradient map. The problem however occurs, when there is a ridge, which
is too narrow, and contains only few data points. This usually causes, that
there are 2 different clusters meeting right on the edge of the ridge and also a
problematic situation for smooth transitioning between these 2 clusters. Such
problematic transition then might lead to a significant increase of the error,
which is the case of the 1 DOF Swingup dataset.

Generally speaking, we can say that Simple Clustering approach performed
the best (best in 3 of 5 experiments) and is also much more computationally
efficient than EHC. The Spectral Clustering, on the other hand, performed
the worst. The reason might be, that it usually selects much smaller clusters
than Simple Clustering and oriented more on not important details. This is
seemingly caused by a selection of similarity matrix, which is created from
Gradient Vector Map.

Back to the merging approaches, we can see that the performance is usually
the same. Merging 1 approach stays behind the Merging 2 and 3, which is
usually caused by handling of transitions. The problem is, that even when
one piecewise model is providing satisfactory results on the input points lying
in the bordering area, the error is influenced by the other model, which might
be very bad. A possible adjustment here could be the utilization of more
neighboring points.

All of the source codes, training datasets and also trained models from all
experiment can be seen on appended CD.

Fun1
Simple Clustering Spectral Clustering EHC SNGP

Mean MSE
Merging 1 0.0146 0.04 0.0228

0.0668Merging 2 0.0071* 0.0466 0.0232
Merging 3 0.0072 0.0447 0.0201

Best MSE
Merging 1 0.0121 0.0215 0.0131

0.0399Merging 2 0.0032 0.0072 0.0079
Merging 3 0.003 0.0139 0.0074

Table 5.3: Results of experiments on Function 1.

43

5. Experiments

1

-0.5

1

0Y

(a) Original

0.5

X2

0.5

X1

1

0.5

0 0

-1

1

-0.5

1

0

Y

(b) SNGP

X2

0.5

0.5

X1

0.5

0 0

-1

1

-0.5

1

0

Y

(c) HL

0.5

X2

0.5

X1

1

0.5

0 0

Figure 5.9: Visual comparison of best runs of standard SNGP and Hierarchical
learning on Fun1 dataset. Figure c) shows a HL algorithm run which used Simple
Clustering method in combination with Merging 2 method. Figure b) shows
output of standard SNGP approach. Figure a) shows the surface of the original
dataset.

Fun2
Simple Clustering Spectral Clustering EHC SNGP

Mean MSE
Merging 1 0.0541 0.0643 0.039

0.1317Merging 2 0.0682 0.0817 0.0358
Merging 3 0.064 0.0767 0.0384

Best MSE
Merging 1 0.0433 0.0506 0.0294

0.1026Merging 2 0.0352 0.0431 0.0245
Merging 3 0.0493 0.0622 0.0254

Table 5.4: Results of experiments on Function 2.

-1.5

1

-1

-0.5

1

0

Y

0.5

(a) Original

X2

0.5

1

X1

0.5

0 0

1

-0.5

0

1

Y

0.5

(b) SNGP

X2

0.5

X1

0.5

0 0

-2

1

-1

1

0Y

(c) HL

1

X2

0.5

X1

2

0.5

0 0

Figure 5.10: Visual comparison of best runs of standard SNGP and Hierarchical
learning on Fun2 dataset.

44

...........................5.3. Experiments with proposed method

1 DOF Swingup
Simple Clustering Spectral Clustering EHC SNGP

Mean MSE
Merging 1 8.7498 5.281 1.2346

13.1308Merging 2 3.1035 2.7568 0.8841
Merging 3 3.0657 2.6204 0.8493*

Best MSE
Merging 1 2.1473 2.0431 0.7725

1.744Merging 2 1.7924 0.7 0.4027
Merging 3 1.8874 0.6702 0.3996

Table 5.5: Results of experiments on 1 DOF Swingup problem.

-40

-30

20

-20

Y

2

(a) Original

-10

X2

0

X1

0

0

-20 -2

-30

20

-20

Y

2

(b) SNGP

X2

0

-10

X1

0

-20 -2

-30

20

-20Y

2

-10

(c) HL

X2

0

X1

0

0

-20 -2

Figure 5.11: Visual comparison of best runs of standard SNGP and Hierarchical
learning on 1 DOF Swingup dataset.

1 DOF Swingup Policy
Simple Clustering Spectral Clustering EHC SNGP

Mean MSE
Merging 1 0.2859 0.6983 0.3717

0.749Merging 2 0.2793 0.6639 0.4261
Merging 3 0.4230 0.6594 0.3997

Best MSE
Merging 1 0.2116 0.3993 0.2695

0.5006Merging 2 0.2099 0.4125 0.2644
Merging 3 0.2250 0.4341 0.2570

Table 5.6: Results of experiments on 1 DOF Swingup Policy.

45

5. Experiments

-2

30

-1

20

0

Y

10
2

(a) Original

1

X2

0

X1

2

0-10

-20 -2

-30

-2

30

-1

20

0

Y

10
2

(b) Standard SNGP

1

X2

0

X1

2

0-10

-20 -2

-30

-2

30

-1

20

0

Y

10
2

(c) Average HL

1

X2

0

X1

2

0-10

-20 -2

-30

Figure 5.12: Visual comparison of best runs of standard SNGP and Hierarchical
learning on 1 DOF Swingup Policy dataset.

Robot Arm Policy
Simple Clustering Spectral Clustering EHC SNGP

Mean MSE
Merging 1 2.6276 30.5225 3.0009

10.8049Merging 2 0.8088* 9.8090 3.8743
Merging 3 0.8186 9.3224 3.3091

Best MSE
Merging 1 1.7107 23.0743 1.6867

7.5838Merging 2 0.4855 6.0943 1.3450
Merging 3 0.5321 5.9233 1.4087

Table 5.7: Results of experiments on Robot Arm Policy.

-10

-5

0

-2

Y

5

10

X1

(a) Original

0 40
20

X2

02
-20

-40

-10

-5

-2

0

Y

5

10

X1

0

(b) SNGP

40
20

X2

2 0
-20

-40

-10

-5

0

-2

Y

5

10

X1

0

(c) HL

40
20

X2

2 0
-20

-40

Figure 5.13: Visual comparison of best runs of standard SNGP and Hierarchical
learning on Robot Arm Policy dataset.

46

Chapter 6
Conclusion

In this work, an evolutionary-based framework for solving Symbolic Regression
problems was proposed, implemented and tested. For the testing purposes,
there were selected 5 different datasets, each containing several problematic
artifacts, which seemed difficult to fit using standard approaches. The
datasets originated from real Reinforcement Learning problems like V-function
approximation for 1 DOF Swingup problem, but also benchmark analytic
functions.

To compare the proposed solution to standard SR approach, the state-of-
the-art implementation of Single Node Genetic Programming (SNGP) was
selected. To objectively evaluate and compare these approaches, there were
performed several independent runs on the selected datasets and statistical
measures like MSE and MAE were tracked. As results in the previous chapter
showed, proposed method was able to outperform the SNGP approach in all
experiments.

Even though the proposed method performed minimally 2 times better with
respect to the average MSE, the experiments also pointed out at one important
fact, that the objective measure like MSE and MAE might not be sufficient
in comparing two approaches. This is the most significant in problems from
real applications, such as Reinforcement Learning problems, where solution
requires a better precision of surface details in specific areas of input space.
The proposed method however succeeds in fitting such problematic areas,
where it utilizes suitable cluster distribution.

The experiments also showed that the method is sensitive to the selection
of clustering approach used to preprocess the input dataset. Even thought
the Simple Clustering approach worked well on most of the datasets, there
were cases when performed worse and produced higher error than the other
two mentioned clustering approaches. The error was however still smaller
than the standard SNGP approach. This problem could be solved in future
work.

In case of merging, the results showed that Merging 2 and 3 dominated
the Merging 1 in most cases. The topic of smoother transition between two
neighboring clusters could also be a topic for future work.

47

48

Bibliography

[1] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[2] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in European Conference on Genetic
Programming. Springer, 1998, pp. 83–96.

[3] C. Ferreira, “Gene expression programming in problem solving,” in Soft
computing and industry. Springer, 2002, pp. 635–653.

[4] I. Arnaldo, U.-M. O’Reilly, and K. Veeramachaneni, “Building predic-
tive models via feature synthesis,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2015, pp.
983–990.

[5] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of statistical
software, vol. 33, no. 1, p. 1, 2010.

[6] A. H. Gandomi and A. H. Alavi, “A new multi-gene genetic programming
approach to nonlinear system modeling. part i: materials and structural
engineering problems,” Neural Computing and Applications, vol. 21,
no. 1, pp. 171–187, 2012.

[7] D. Jackson, “A new, node-focused model for genetic programming,” in
European Conference on Genetic Programming. Springer, 2012, pp.
49–60.

[8] ——, “Single node genetic programming on problems with side effects,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2012, pp. 327–336.

[9] J. Kubalík, E. Alibekov, J. Žegklitz, and R. Babuška, “Hybrid single
node genetic programming for symbolic regression,” in Transactions on
Computational Collective Intelligence XXIV. Springer, 2016, pp. 61–82.

[10] R. Murray-Smith, “Local model networks and local learning,” Fuzzy
Duisburg, vol. 94, pp. 404–409, 1994.

49

Bibliography
[11] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable

functional interpolation and adaptive networks,” DTIC Document, Tech.
Rep., 1988.

[12] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[13] T. A. Johansen and B. A. Foss, “Identification of non-linear system
structure and parameters using regime decomposition,” Automatica,
vol. 31, no. 2, pp. 321–326, 1995.

[14] J. Abonyi, R. Babuska, H. B. Verbruggen, and F. Szeifert, “Incorporating
prior knowledge in fuzzy model identification,” International Journal of
Systems Science, vol. 31, no. 5, pp. 657–667, 2000.

[15] J. Novák, “Nonlinear system identification and control using local model
networks,” 2007.

[16] J. A. J. Tar and F. Szeifert, “Identification of mimo processes by fuzzy
clustering,” in the Proc. of the 2001 IEEE International Conference on
Intelligent Engineering Systems (INES 2001), Helsinki, Finland, 2001,
pp. 65–70.

[17] D. L. Ly and H. Lipson, “Learning symbolic representations of hybrid
dynamical systems,” Journal of Machine Learning Research, vol. 13, no.
Dec, pp. 3585–3618, 2012.

[18] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[19] U. Von Luxburg et al., “Clustering stability: an overview,” Foundations
and Trends R© in Machine Learning, vol. 2, no. 3, pp. 235–274, 2010.

[20] S. Still and W. Bialek, “How many clusters? an information-theoretic
perspective,” Neural computation, vol. 16, no. 12, pp. 2483–2506, 2004.

50

Appendix A
User Guide

A.1 Requirements..1. Java version 8..2. Matlab 2013 and later

A.2 Organization of appended CD

The source codes are organized into following categories:..1. Matlab sources - /matlab/..a. Sources of the simple and spectral clustering - /matlab/clustering/..b. Sources of the merging methods - /matlab/merging/..2. Java sources of SNGP, EHC and HL implementation - /java/src/..3. Java distributable of SNGP, EHC and HL implementation - /java/dist/..4. Experimental datasets and results - /experiments/

A.3 Dataset

The training dataset has to keep following format:
1 <number o f v a r i a b l e s >
2 <number o f datapoints >
3 <X1> <X2> <Y>
4 <X1> <X2> <Y>
5 <X1> <X2> <Y>

A.4 Clustering

In order to test the clustering you have to run matlab script file com-
pareClustering.m located in /matlab/clustering/. Before executing the

51

A. User Guide
script, you have to specify few initialization variables. In the script editor,
specify following variables located at the top of the file:..1. datafile - path to the file with input data..2. numClusters - number of clusters in final..3. threshold - threshold value for simple clustering algorithm..4. basename - readable name of the input dataset..5. split_fun_dir - path to the folder, where EHC splitting functions are

saved..6. split_fun_seed - random seed of EHC splitting functions on which
they were trained

After running the script, there are created 3 folders in current folder, which
contain datasets for each type of clustering methods. These folders serve as a
input for Hierarchical Learning algorithm.

To run a EHC learning and get the splitting functions for script described
above, you have to run terminal script SNGPClustering.jar located in
folder /java/dist/ using following command:

$ java -jar SNGPClustering.jar

The script also requires a configuration file clustering.properties, which is also
included in the same folder. User has to specify following properties in file:..1. dataset - path to training dataset..2. nbOfRuns - number of separate EHC runs..3. seed - random seed for PRNG..4. numRestarts - number of random restarts per run, to avoid local

optima..5. maxTreeDepth - maximal search tree depth, which influence number
of clusters 2maxT reeDepth = numClusters

After running the script, folder results/ is created and filled with split-
ting functions. The path to these functions should then be specified as a
split_fun_dir parameter in compareClustering.m script.

A.5 Hierarchical Learning

To run the Hierarchical Learning script, go to folder /java/dist/ and first,
customize following properties in file hierLearning.properties:..1. maxGenerations - maximal number of generations

52

...................................... A.6. Merging..2. datasetDir - path to folder containing the split dataset files, generated
in clustering phase..3. maxTreeDepth - maximal search tree depth..4. numSimpleClusters - specifies on how many starting clusters is algo-
rithm learning..5. epsilon - epsilon in line 15 in Algorithm 4 (Hierarchical Learning)..6. resultsDir - path to folder, where learned models are stored..7. nbOfRuns - number of separate runs of the algorithm..8. tailFunctionSet - name of functions which can be used as a starting
features (function nodes)..9. populationSize - size of population of new nodes

Properties in italics are optional, and you can leave default values for them.
In case of tailFunctionSet you can pick from following functions: Multiply,
Plus, Minus, Pow2, Pow3, Pow4, Pow5, GeneralGauss2D, GeneralTanh,
BendIdentity, Sine, Cosine

The script is executed using command

$ java -jar SNGPHierLearning.jar

from the command console or terminal. Running the command again
requires preinstalled Java environment. When the learning process is finished,
matlab model files and also final partition of clusters are created in the results
folder. These are used in the merging phase, which visualizes the outcome.

A.6 Merging

Merging scripts are found in folder /matlab/merging/. To simply compare
outcomes of merging methods, you can run script compareMerging.m. You
also have to specify few variables, before running the script. In the script
editor, open file compareMerging.m, and edit following variables at the
top of the file:..1. basename - readable name of dataset, which is same as in clustering

phase..2. clustering_method - type of clustering, which generated dataset, op-
tions are {simple, spectral, ehc}..3. tag - must be same as random seed of HL algorithm run

The script expects, that current working folder of matlab contains following
folders:

53

A. User Guide1. dataset folder - the same folder, which was generated during clustering
phase, format "dataset_<basename>_<clustering_method>/"..2. model folder - containing learned models from HL algorithm, format
"results_<clustering_method>/"

The outcome of the script is a figure with 3 images, comparing all three
merging methods. MSE (MAE) of these methods is stored in vector variable
mse (mae respectively).

54

	Introduction
	Evolutionary approaches in symbolic regression
	Evolutionary Feature Synthesis
	Multi-gene Genetic Programming
	SNGP
	SNGP Population
	Fitness Evaluation
	SNGP Operator
	Evolutionary Search
	Single-run SNGP with LASSO regression

	Summary

	Local Model Methods
	Local Model Networks
	Operating regime decomposition
	Multi-Modal Symbolic Regression
	Clustered Symbolic Regression
	Transition Modeling
	Problems in MMSR

	Summary

	Proposed Method
	Clustering
	Spectral clustering
	Simple Clustering
	Evolutionary Hierarchical Clustering (EHC)

	Hierarchical learning
	Piecewise models merging
	Labeling unseen data
	Merging method 1
	Method 2
	Method 3
	Model merging in hierarchical models

	Experiments
	Setup
	Clustering Experiments
	Experiments with proposed method
	Evaluation and Analysis

	Conclusion
	Bibliography
	User Guide
	Requirements
	Organization of appended CD
	Dataset
	Clustering
	Hierarchical Learning
	Merging

