
Technical University of Košice
Faculty of Electrical Engineering and Informatics

Learning Using Teleoperation on
Humanoid Robotic Systems

Bachelor’s Thesis

2015 Ján Gamec



Technical University of Košice
Faculty of Electrical Engineering and Informatics

Learning Using Teleoperation on
Humanoid Robotic Systems

Bachelor’s Thesis

Study Programme: Cybernetics

Field of study: 9.2.7 Cybernetics

Department: Department of Cybernetics and Artificial Intelli-

gence (KKUI)

Supervisor: prof. Ing. Peter Sinčák, CSc.

Consultant(s):

Košice 2015 Ján Gamec



Errata

Learning Using Teleoperation on Humanoid Robotic Systems
Ján Gamec

Košice 2015

Page Line Wrong Correct



Abstract

This bachelor thesis is focused on problems regarding teleoperation of humanoid

robots and knowledge acquired during it. It deals with a utilization of this knowledge

studying specific learning techniques. The main focus is given to reinforcement

learning and also neural networks. This thesis overviews an existing methods utilized

in real-world applications, and also proposes some improvements for one of these

methods. In addition, the method is tested on a task with a humanoid robot.

Keywords

Teleoperation, Learning, Humanoid Robotic systems

Abstrakt

Táto bakalárska práca je orientovaná na problematiku týkajúcu sa teleoperácie na

humanoidných robotoch a taktiež znalostí nadobudnutých počas nej. Predmetom

je aj štúdium metód, ktoré pomáhajú efektívne využiť tieto znalosti. Veľká po-

zornosť je venovaná tzv. učeniu odmenou a trestom a problematike neurónových

sietí. Cieľom práce je prehľad existujúcich metód využívajúcich sa v reálnych ap-

likáciách ako aj návrh vylepšenia jednej z nich. Táto metóda je následne podrobená

testu na úlohe s humanoidným robotom.

Kľúčové slová

Teleoperácia, Učenie, Humanoidný robotický systém





Declaration

I hereby declare that this thesis is my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Košice, May 29, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature



Acknowledgement

I would like to thank sincerely my supervisor, prof. Peter Sinčák for his time and a

guidance throughout the entire process of development and research. I would also

like to express a special thanks to all the current, and also previous members of the

Center for Intelligent Technologies at TU Košice, for their advice and also pleasant

working environment. Last but not least, I would like to thank all, who helped me

with writing and completing this thesis.



Contents

1 The problem definition 3

2 Teleoperation Systems 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Important notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Teleoperation methods and applications . . . . . . . . . . . . . . . . . 7

2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 From teleoperation to autonomy . . . . . . . . . . . . . . . . . . . . . 9

2.5 System autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Learning from Teleoperation 12

3.1 Learning from teleoperation using Fuzzy systems . . . . . . . . . . . 13

3.1.1 Expanding hyperboxes in the state space . . . . . . . . . . . . 13

3.2 Learning from Teleoperation using Neural Networks . . . . . . . . . . 15

4 Reinforcement Learning 17

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Basic terminology in Reinforcement Learning . . . . . . . . . . . . . . 17

4.3 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 General Reinforcement Learning Approaches . . . . . . . . . . . . . . 20

4.4.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 20

4.4.2 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . 23

4.4.3 Temporal Difference methods . . . . . . . . . . . . . . . . . . 24

4.4.4 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Reinforcement learning in Teleoperation 27

5.1 General scheme of learning . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 GARIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



FEI KKUI

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.2 Action Evaluation Network . . . . . . . . . . . . . . . . . . . 29

5.2.3 Action Selection Network . . . . . . . . . . . . . . . . . . . . . 31

5.2.4 Stochastic Action Modifier . . . . . . . . . . . . . . . . . . . . 32

5.3 Neural Fitted Q Iteration . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 Main concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.2 Basic NFQ Algorithm . . . . . . . . . . . . . . . . . . . . . . 34

5.3.3 Utilization of NFQ in Teleoperation . . . . . . . . . . . . . . . 35

6 Experiment 36

6.1 Task description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Technology used in experiment . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.3 NAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Reinforcement learning from teleoperation . . . . . . . . . . . . . . . 39

6.3.1 Modified NFQ Algorithm . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 RPROP Training . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5 Experiment evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 50

Bibliography 52

Appendices 54

9



List of Figures

2 – 1 Visual representation of teleoperation process and terms. . . . . . . . 7

2 – 2 iRobot’s view of autonomy levels. . . . . . . . . . . . . . . . . . . . . 11

3 – 1 Conversion of hyperboxes into corresponding membership functions.

The 𝑥𝑖 in the figure illustrates a state variables, and 𝐴1,2 are particular

classes(actions). The 𝜇𝐴𝑖
(𝑥𝑖) represents a degree of membership of

state variable 𝑥𝑖 to the corresponding class. . . . . . . . . . . . . . . . 15

4 – 1 Reinforcement learning process. . . . . . . . . . . . . . . . . . . . . . 19

5 – 1 Utilizing Teleoperation in process of Reinforcement Learning to learn

decision strategy according to human. . . . . . . . . . . . . . . . . . . 28

5 – 2 Operator in a position of a supervisor, after system has learned the

decision model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 – 3 General architecture of GARIC. . . . . . . . . . . . . . . . . . . . . . 30

5 – 4 Structure of AEN module in GARIC. . . . . . . . . . . . . . . . . . . 31

5 – 5 Internal structure of ASN module of GARIC architecture. . . . . . . 32

6 – 1 State information in the experiment . . . . . . . . . . . . . . . . . . . 45

6 – 2 Task learning process performance overview. . . . . . . . . . . . . . . 46

6 – 3 MTIA level of an agent during learning process. . . . . . . . . . . . . 47

6 – 4 State variables before learning process. . . . . . . . . . . . . . . . . . 48

6 – 5 State variables after learning process. . . . . . . . . . . . . . . . . . . 49



List of Tables

6 – 1 Comparison of RPROP and Backprop learning algorithms. . . . . . . 43



List of Symbols and Abbreviations

𝐸𝜋 Expected value returned from cumulative reward

𝑄𝜋(𝑠, 𝑎) State-action value function

𝑅 Reward function

𝑇 Transition function

𝑉 𝜋 Value function

𝜇𝐴𝑖
Fuzzy membership functions

𝜋 Decision strategy, probabilistic function

𝑟𝑡 Reward/reinforcement acquired in time t

𝑠𝑡 State in time t

AEN Action Evaluation Network

ASN ACtion Selection Network

DP Dynamic programming

GARIC Generalized Approximate Reasoning based Intelligent Control

GTI Global Task Intelligence

HTI Human Task Intelligence

LfD Learning from Demonstration



FEI KKUI

MC Monte Carlo methods

MDP Markov Decision Process

MTI Machine Task intelligence

MTIA Machine Task Intelligence Autonomy

NFQ Neural Fitten Q Iteration

RPROP Resilent Propagation

SAM Stochastic Action Modifier

TD Temporal Difference methods

13



FEI KKUI

Introduction

In the past two decades, the world has encountered a rapid increment of occurrences

of robotic platforms in various sectors. Robots are used during surgeries or on a

production line in a factory. Applications areas have huge differences but still a few

thing in common. Since the number of robots is increasing, demand for specialists,

who can control such machines is also growing. We have two options, either teach

and train more specialized people or, on the other hand, start to develop machines

that are more responsive to the human. As far as I am not a qualified teacher and

don’t know about teaching, This work will be focused on the problems regarding

the second case.

Teleoperation has been developing for long decades, since the age of Nicola Tesla.

Since then, people studied how to control machines without using physical force.

However, this field was available only to the few people dedicating to research. In

the middle of the last century, when the field of Cybernetics started to expand,

scientists also began to think of a way that could bring machines closer to common

people. They studied interactions between humans and machines. Nowadays, we can

say that Teleoperation is closely bound to the area called Human-Robot Interaction.

The fundamental goal of this work is to study methods, which can help interaction

with machines to common people in a user-friendly way. This means that a human

controlling some robot does not have to care about the physical and mathematical

background of the processes running in the background. To go even further, we want

to study approaches, which can unburden human from infinitely often repeating

same tasks. This means that we study system that are capable of learning from

experience and apply this knowledge to specific tasks after then.

To make these applications available to ordinary, we need to bring the maximal

possible level of abstraction into the learning process and also to the user interface.

1



FEI KKUI

For this purposes we’ve chosen reinforcement learning methods, that does not require

a detailed mathematical description of the environment and whole system. Even

though it is working in the laboratory conditions, real-world applications require

more sophisticated methods. Due to this we have chosen a method called the Neural

Fitted Q Iteration (NFQ), and we are proposing its modification so it can be applied

to learning directly from even layman’s knowledge.

To test this method’s performance, we are proposing an experiment, in which hu-

manoid robot is facing the trivial task. The goal is to learn the task as fast as

possible and make this robot fully autonomous in performing this task. Controlling

of this robot is designed and adjusted, so that anybody with a computer or cell

phone can perform this learning process.

2



FEI KKUI

1 The problem definition

This bachelor thesis is focused on machine learning, especially areas called the re-

inforcement learning and learning from teleoperation.

The goal of this work is to fulfill following tasks:

1. Review of methods, which are applicable to the teleoperation of a robotic

system. The main focus is given to the humanoid robotics area. The work will

also explain the basic terminology used in teleoperation, due to its necessity for

describing different teleoperation approaches. It also gives a focus to learning

from the teleoperation utilizing various artificial intelligence approaches.

2. Review of reinforcement learning methods applicable to the problems regard-

ing learning from teleoperation. The work also reviews and describes general

methods and terminology in reinforcement learning. We consider it to be a

necessary background for advanced reinforcement learning methods applied in

the learning from teleoperation.

3. Proposal, implementation and also a testing of such method. The work pro-

poses a modification for advanced reinforcement learning method that can be

utilized in the learning from teleoperation of a humanoid robot. To verify the

method, this work also describes an experiment done in a simulated environ-

ment utilizing a NAO humanoid robot.

4. Analysis of implemented method from the aspect of incremental learning. The

experiment also evaluates how successful is a robot before and after the learn-

ing procedure. It also analyzes the progressive decrease of operator’s involve-

ment in the task. The goal of the experiment is to teach a robot to perform a

task so that a human operator does not have to make any effort to finish it.

5. Generate a user and also a reference guide documenting the created applica-

3



FEI KKUI

tion. The file and the code structure might be complex, this work also includes

a complete guide and explanation of all parts of the code.

4



FEI KKUI

2 Teleoperation Systems

2.1 Overview

Teleoperation is a scientific field studying approaches to operating objects remotely.

It has been becoming more and more popular over last decades and been chosen

as the topic for several academic works. In the pursuit of the origin of this word,

one has to understand the meaning. The word teleoperation consists of two parts:

tele - that means at distance and operation - which can be understood as manipu-

lation or control. Joining this two words together, one gets a powerful method to

manipulate and change the environment at a distance, almost without any physical

activity or force. The idea was not invented nowadays, but it is dating back to late

1800s when Nikola Tesla as the first man, patented fundamental principles about

manipulating objects at a distance using radio communication. However, the idea

has grown up more than one century later at world war. The Russian army devel-

oped a teletank that could be operated at a distance up to 1500 meters using radio

communication. Despite the military applications, that spread widely during the

war, first famous non-military application was developed by R.Goertz for the very

first nuclear reactor. The mechanical manipulator was able to move radioactive ma-

terial protecting human from contact with dangerous material. Over the years until

now, the field of teleoperation became an important area studied by cybernetics and

artificial intelligence.

2.2 Important notions

This section overviews and explains most important terms used in teleoperation and

especially in telerobotics. These terms have been explained in detail in [1, 2, 3].

Robot is a word firstly mentioned in a book of Karel Čapek called R.U.R. History

5



FEI KKUI

and the meaning of this word has been subject of many discussions and articles,

but the one I like the most is the one from [4]: "The robot is any automati-

cally operated device that replaces human effort." This means that the robotic

systems should be able to act physically or mentally as a human being. Thus,

robotics is the field studying construction, engineering and programming of

such systems.

Humanoid robot is a type of robot whose body shape (or part of it) ought to

resemble the shape of human body.

Operator is a person, who takes responsibility for actions executed by an agent,

or in our case, the robot. Generally speaking, the operator is the person who

holds the joystick and moves the robot at a distance.

Telemanipulator or remote manipulator is a mechanical device providing operator

ability to control a remote agent. This term is usually bound to the area

of microsurgeries when the operator controls mechanical hands to perform a

surgery. In a less strict definition, it can be any hardware (or even software)

that the operator controls to move and manipulate the remote agent in an

environment.

Teleoperator is the mentioned agent or the robot controlled at a distance. Gen-

erally speaking, teleoperator is any device manipulated by an operator and

providing feedback about own presence and state.

Teleoperation is then a process, when the operator controls a telemanipulator

to move the real teleoperator in a distant environment, where distance can

vary from millimeters to thousands of kilometers. Supervision of state and

progress of controlled system is achieved using sensory information provided

by teleoperator system.

These terms are visually explained in the figure 2 – 1 according to the [5].

6



FEI KKUI

Visual  and Audio Feedback

Telemanipulator
 

Communication
Medium

Environment

Teleoperator

Operator

Figure 2 – 1 Visual representation of teleoperation process and terms.

2.3 Teleoperation methods and applications

2.3.1 Methods

Most teleoperation methods used in a field of robotics can be characterized by

a master-slave relation. This means that the telerobot (slave) fulfills commands

given be an operator (master). Such methods can be distinguished by a form of

teleoperator used for giving orders to a slave.

∙ Simple, Joystick - approach utilizing a gamepad or joystick is one of the

easiest and most used method for teleoperation nowadays. Such hardware

is easily accessible and doesn’t require complex programming implementation.

Almost every higher programming language has support for such devices. This

7



FEI KKUI

approach covers a wide range of suitable application, and, in addition, such

mechanism can often control much more complex systems. An example of an

appropriate task might be a robot navigation.

∙ Visual-based - methods are using sensors such a Microsoft Kinect, to track

a motion of the operator. Opposing to the previous type, where the operator

had to do unnatural hand motion for teleoperation task, this approach is using

more natural motions or gestures. A good example might be a grabbing an

object task where teleoperation using joystick might be very complex task.

On the other hand, utilizing sensor system like Kinect or Leap Motion would

simplify a task a lot, from the operator’s point of view. The price for such

comfort is much complex implementation.

∙ Isomorphic - approach is utilizing a piece of hardware crafted uniquely for

a certain type of robot and task. As mentioned before, visual-based methods

were much more comfortable, but still were lacking any feedback, which would

provide, let’s say, realistic feeling about the environment and robot status.

For such reasons, there were developed systems such a KIST [6]. The KIST

system is tracking a human hand and transferring its motion to the robot. The

robot then sends back information from his tactile sensors and the KIST hand

extension, equipped with tactile feedback devices, provides operator realistic

feeling about the force used for e.g. holding an object.

2.3.2 Applications

Teleoperation is a widely applicable technique utilized in various types of tasks. As

mentioned before, one of the first areas, where teleoperation took the important

role was military area. The main idea of utilizing a teleoperation in this area was

to protect a human from finding himself in dangerous situations. Due to this fact,

Army started developing vehicles, that don’t require a direct presence of a man on

8



FEI KKUI

board to fulfill tasks. One of the most famous examples are military drones X-47B

that can even refuel themselves without the onboard presence of a pilot.

Another lifesaving example of teleoperation application are surgery robots allowing

telesurgeries, which are surgeries where specialists do not need to be present at

a place. Surgery robots are far more precise than a human hand, which brings

medicine a step forward in neuro surgeries. The best example of such a system is

well-known da Vinci system.

Nowadays, teleoperation is present almost everywhere the presence of human may be

dangerous. We could find many examples where robotic systems replace a human in

dangerous environments like mines, the radioactive environment of highly explosive

areas.

2.4 From teleoperation to autonomy

Even though the area of teleoperation is broad enough to cover more than one

bachelor work, the topic of this thesis is not focused only on teleoperation. This

work consider teleoperation to be a starting point for reaching a certain degree of

autonomy of a teleoperator.

Word autonomy originating from ancient Greek is a capacity of making rational,

not coerced decision. In a field of robotics, this means, that a robot, occurring

in some environment, should be able to make a rational (to human supervisor)

decision, based on his own knowledge or experience. Thus, this strongly human-like

behavior requires much intelligence and a process of acquiring such intelligence or

knowledge is called learning. Generally speaking about learning from teleoperation

means, that the teleoperator is creating an own decision model based on experience

observed from decisions of the operator.

9



FEI KKUI

When speaking about decision model, I mean some kind of policy [7] or strategy

which in every state (situation) decide, what action is the most appropriate to move

closer to the goal of a task. This means approximating such a probabilistic function

𝜋 (2.1), that in each state maps highest probability to the best action according to

this rule.

𝜋 = 𝑆 × 𝐴→< 0, 1 > (2.1)

Learning in this manner means finding and approximating such a function, utilizing

some method of artificial intelligence (Artificial Neural Networks, Fuzzy Systems and

other)

2.5 System autonomy

However there does not exist a universal solution to achieve complete autonomy in

a robotic system yet, term autonomy is closely bound to the type of task performed.

Formally speaking, measuring autonomy is a task-oriented approach expressed by

the equation (2.2)[8].

𝐺𝑇𝐼 = 𝐻𝑇𝐼 + 𝑀𝑇𝐼 (2.2)

GTI (Global Task Intelligence) always has value of 1, and it is a sum of HTI (Human

Task Intelligence) and MTI (Machine Task intelligence) which obtain values from

< 0, 1 >. According to [8] we can additionally define a Machine Task Intelligence

Autonomy (MTIA) by equation

𝑀𝑇𝐼𝐴 = 𝑀𝑇𝐼

𝐻𝑇𝐼
(2.3)

MTIA equal to 0 is corresponding to the task performed completely by a human.

Understanding of different levels of autonomy according to U.S. iRobot company

can be seen in figure 2 – 2

Transferring these facts to the problem of teleoperation, task when operator fully

controls behavior and decisions of a robot has MTIA equal to 0. On the other hand,

10



FEI KKUI

Figure 2 – 2 iRobot’s view of autonomy levels.

if a robot has own inner decision model corresponding to the operator’s, we are

talking about MTIA equal to 1. In the following sections, the process of adapting

the robot’s decision model deliberately, using teleoperation to increase the level of

MTIA, is called Learning from Teleoperation.

11



FEI KKUI

3 Learning from Teleoperation

Learning from Teleoperation means using the operator’s demonstration to learn per-

form particular task similarly to the operator. Since the demonstration knowledge

can be collected in different ways, where teleoperation is just one of them, we con-

sider Learning from Teleoperation to be a subclass of the area called Learning from

Demonstration (LfD). The best approach to acquiring and storing the experience

during the learning from teleoperation is to collect information about a current state

and operator’s decisions in a form of tuples.

(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)

This means that every time the operator makes a decision, teleoperator collects

information about his current state using its perception system and combines it

with an action command. These tuples are then joined into a training set. The

learning process then consists of two steps:

1. Demonstrating the desired behavior using teleoperation techniques and col-

lecting training samples into the training set.

2. Generating appropriate function corresponding to operator’s decision model.

The first step of the learning process consists of acquiring data from the demonstra-

tion. According to the [9], we distinct two common approaches to obtaining such

data from robot:

1. Teleoperation - as mentioned before, technique where teacher (operator)

operates a robot learner and the robot sensors directly records data.

2. Shadowing - a technique in which robot learner observes teacher’s (opera-

tor’s) motion using its own sensors.

12



FEI KKUI

The second step of the learning process consists of a function approximating and

also extrapolating operator’s behavior can be represented by different artificial in-

telligence methods. In the following sections, There will be introduced different

approaches to this problem, explaining well or less known algorithms utilizing fuzzy

systems, artificial neural networks or reinforcement learning.

3.1 Learning from teleoperation using Fuzzy systems

The main task of the fuzzy system in the decision process is to take a role of a decision

function, that maps a robot’s state in a state space into an action it executes. The

goal of the learning from teleoperation is finding such function, that corresponds

to the decisions of the operator during the teleoperation. This decision function

is represented by a rule set containing rules, in which predicate part is formed by

fuzzified state information. Approximation of a decision function can be achieved

in several ways. In addition to the mostly used iterative techniques like neural

networks and evolutionary algorithms, [10] proposed another iterative approach,

which extracts rules directly from the training data using hyperboxes.

3.1.1 Expanding hyperboxes in the state space

In the following algorithm, fuzzy rules extraction process consists of 2 steps. In the

first step, each input vector in a state space is clustered placing a hyperbox around it

and labeling it with a desired class (decision made by the operator). At this point,

I need to emphasize, that the number of classes (actions) is finite. The iterative

learning process is based on expanding the hyperboxes in a state space until they

touch a hyperbox of a different class. When more hyperboxes of the same class are

overlapped, they collapse together. Such a process minimizes an empty state space

and also a number of conflicting zones. Each hyperbox has following structure:

13



FEI KKUI

∙ Lower bound for each dimension in a state space.

∙ Upper bound for each dimension in a state space.

∙ Class label corresponding to an action decision of the operator.

The second step of the learning procedure is a derivation of the fuzzy rules from

these hyperboxes. As can be seen in the figure 3 – 1, hyperboxes are transformed

into trapezoidal or triangular membership functions according to each of dimensions

bounds. This practically means, that if input state space has 2 dimensions, result-

ing fuzzy rule will be comprised out of 2 membership functions. The slope of the

triangle’s (or trapezoid) side is a constant value, which guarantees the smoother

operation of a robot. For a classification of an input vector with the fuzzy rules, the

sum operator is used. Formal description of the classification process is expressed

by equation (3.1), where 𝑛 is a number of all inputs.

𝑦 =

𝑛∑︀
𝑖=1

𝜇𝐴𝑖
(𝑥𝑖)

𝑛
(3.1)

Where 𝜇𝐴𝑖
(𝑥𝑖) in the equation represents the degree of membership of input 𝑥𝑖 to

particular set (action) 𝐴𝑖 and 𝑦 is a global classification of whole input vector.

To determine the input vector’s class in the decision process, the rule which fires

and accumulates the highest sum is accepted as the winner. The rule is considered

to be fired, when average membership activation is higher that 0.5. If no rule is fired

(empty space between hyperboxes), a default action is selected and triggered. The

default action is usually by the number of occurrences in the training set. On the

other hand, when several rules are fired at the same time, action is selected either

randomly, or according to the previous decision to ensure consistency in the process.

14



FEI KKUI

x1 x1

0

1

x2 x2

0

1

x1 x1

Hyperbox1

Hyperbox2

A1

A2

Constant gradient

µ A
i(x

i)

µ A
i(x

i)

Figure 3 – 1 Conversion of hyperboxes into corresponding membership functions. The 𝑥𝑖 in the

figure illustrates a state variables, and 𝐴1,2 are particular classes(actions). The 𝜇𝐴𝑖(𝑥𝑖) represents

a degree of membership of state variable 𝑥𝑖 to the corresponding class.

3.2 Learning from Teleoperation using Neural Networks

Nowadays, artificial neural networks are widely used in various learning tasks and

learning from teleoperation is not an exception. In a previous section, I briefly

introduced fuzzy inference systems as a suitable mechanism for simulating control

function in robotic systems. Although fuzzy systems might seem to be effective,

summary and easy-to-implement method, they usually lack a direct mechanism to

learn from data. This deficiency is usually patched by utilizing other methods of

artificial intelligence like neural networks.

Compared to the fuzzy systems in problems regarding learning from teleoperation,

neural networks does not only take the place of a control function, but also of a

universal learning approach. This learning approach can sufficiently approximate

15



FEI KKUI

a function from training data and also generalize it. The only deficiency is its

complexity, which results in a human unreadable form of learned knowledge.

The most notable implementations of independently used neural networks are usu-

ally concerned to algorithms incorporating a haptic feedback. The main idea of

these algorithms is a generation of so-called potential fields, that guide to a goal

of a task simulating kind of forces dragging object closer to a target position. An

example of such an algorithm is explained in [11], where authors utilize hierarchical

neural networks to learn a manipulation task. It is important to mention, that these

algorithms usually use a supervised type of learning.

Another approach to teaching a neural network is some kind of a transition between

supervised and unsupervised learning techniques called reinforcement learning. This

approach will be explained more in detail in the following section.

16



FEI KKUI

4 Reinforcement Learning

4.1 Introduction

The main idea of reinforcement learning is learning from interaction with an envi-

ronment. An example of such learning might by a learning to play some musical

instrument. At first, when one takes a violin in hands and try to make some tones,

it probably ends up in a total disaster. If somebody else was listening to at a time,

he would not probably praise it. However, if you practice a lot, it’s natural that you

improve and it is more and more probable, that you start receiving a praise. Al-

though this example has nothing to do with artificial intelligence or computational

methods, it is a strong allegory to fundamental principles of reinforcement learning.

Reinforcement learning is a subclass of the area called machine learning. Right at

the beginning of this chapter, it is important to remember that problems regarding

reinforcement learning are not specified by a method utilized, but by the task de-

scription. In general main subject of interest in reinforcement learning is an agent,

existing in some environment with a passion for reaching a goal of a task. His per-

formance is quantitatively evaluated by a total reward or punishment he receives

while fulfilling the task. Comparing with the example, the agent is a potential violin

player and the reward/punishment function is a spectator praising or squeaking the

performer. The goal of reinforcement learning is to learn agent to perform a task

with a maximal possible reward.

4.2 Basic terminology in Reinforcement Learning

Let’s start with a previously mentioned terms, the agent and an environment.

Agent is also called a learner or decision-maker. In the process of learning, he is

17



FEI KKUI

the one who learns from interaction and is rated by the quality of performance.

Everything else, which is during task possible to be interacted with is called an

environment. Therefore, we can say that task is a loop starting with an agent

taking an action, to which environment naturally reacts providing the agent new

situations.

According to [7], despite these terms, we recognize another four necessary sub-

elements. They are a policy, a reward function, a value function and finally a model

of an environment.

A policy 𝜋 is a kind of decision function, advising an agent what is the best action

to do in a specific time step. Formally speaking, policy is a function 𝜋, that maps

each state 𝑠𝑡 into corresponding action 𝑎𝑖.

A reward function 𝑅 is evaluator, that gives each state in which agent happens

to be a number. The number is called a reward 𝑟 and generally it tells us, how good

was a transition to state 𝑠𝑡.

If reward signalized fitness of every immediate transition a value function 𝑉 looks

at a transition from a global scope. The transition means taking an action 𝑎𝑖 in

state 𝑠𝑡. If transition is suitable for the global task and brings agent closer to the

target, value function generates higher values.

Finally, a model is a formal expression of the whole environment. It defines what

happens after an agent takes an action and in what next state he appear. Knowing

a model of an environment can also help us predict the future states. However, this

knowledge does not have to be explicitly given, so there do exist methods that try

to approximate the model in order to plan the future states and behavior.

To sum it up, when speaking of reinforcement learning we focus on a learner, an

agent, who occurs in an environment described by its model, which can be unknown.

Learning is a process of finding such policy 𝜋, which advise the agent the best action

18



FEI KKUI

𝑎𝑖 in each step 𝑠𝑡. Evaluation of suitability of an action can be characterized either

by immediate evaluator, the reward function 𝑅(𝑠, 𝑠′), or a global, the value function

𝑉 𝜋(𝑠). The learning process can be seen in figure 4 – 1

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 4 – 1 Reinforcement learning process.

4.3 Markov Decision Process

To formally define a Markov Decision Process (MDP), we need to supplement the

previous section with some terms and properties.

Although term actions was used several times in the previous section, it is impor-

tant to emphasize some facts about it. Actions or a set of actions is a finite set

{𝑎1, 𝑎2 . . . 𝑎𝑖} (might be infinite in some systems), where 𝑖 is a size of action space.

All actions are used to control the state, and all actions all applicable in each state

in which an agent occurs.

However it was mentioned in a previous section, more formal definition of a term

transition is also needed. By applying action 𝑎𝑖 from action set in state 𝑠𝑡, an agent

makes transition to state 𝑠𝑡+1, based on a probability distribution of a transition

set. Transition function is defined by equation 4.1, and it expresses a probability of

ending up in a state 𝑠𝑡+1, when taking action 𝑎𝑖 in state 𝑠𝑡.

𝑇 : 𝑆𝑥𝐴𝑥𝑆 →< 0, 1 > (4.1)

19



FEI KKUI

Thus, Markov Decision Process can be formally described as a tuple < 𝑆, 𝐴, 𝑇, 𝑅 >,

where 𝑆 is a finite set of states, 𝐴 is a finite set of actions, 𝑇 is a transition function

and 𝑅 is a reward function. The transition function 𝑇 and the reward function 𝑅

together characterize a model of a system. The tuple is sometimes extended with

parameter 𝛾 called a discount factor, which signalizes importance of current reward

against future rewards.

System can be called Markovian if result of currently executed action is dependent

only on the current state and not on the previous actions and states. In other words,

this means, that every time an agent happens to be in a state 𝑠𝑡 deciding for action

𝑎𝑖, probability of ending up in state 𝑠𝑡+1 is always the same. This fact is also called

a Markov Property and help us distinct MDP from other systems.

Resulting from the Markov Property, a problem generally solved by MDP can be

defined. It is not finding a sufficient model of a system, as one might think, but

finding a policy 𝜋. When a proper policy 𝜋 is learned and combined with a decision

system, we get a so called Markov Chain. Finding an optimal policy means finding

such policy, that maximizes a cumulative reward acquired from a reward function

while performing a specific task and starting from a random state 𝑠0.

However, the theory of Markovian systems and decision processes was a subject of

enormous number of papers, I consider this brief introduction to be a good starting

point for the following sections.

4.4 General Reinforcement Learning Approaches

4.4.1 Dynamic Programming

The main idea of the dynamic programming (DP) methods in reinforcement learning

is utilizing a Value function 𝑉 𝜋 in order to find an optimal policy. Let me define

20



FEI KKUI

the Value function more formally due to its importance in following lines.

As mentioned, a value function in reinforcement learning estimates how good it is

for an agent, to be in a state 𝑠𝑡 from the global point of view according to the task.

To evaluate a state, value function approximates an expected cumulative reward if

an agent is starting the task from state 𝑠𝑡 and following the policy 𝜋. According to

[7], formal definition of this function is expressed by equation 4.2.

𝑉 𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{
∞∑︁

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠} (4.2)

𝐸𝜋 in this equation means an expected value returned, when an agent is following

the policy 𝜋 from time step 𝑡.

Although it wasn’t mentioned before, in addition to the value function 𝑉 𝜋, there

exists another value function called an action-value function denoted as 𝑄𝜋. Ba-

sically, if value function 𝑉 𝜋 approximates how good is to be in a state 𝑠𝑡, the

action-value function 𝑄𝜋 approximates how good is to be in a state 𝑠𝑡, taking an

action 𝑎𝑡, and again, following policy 𝜋. Meaning of how good is also represented

by expected cumulative reward acquired at the end of the task. Formal notation of

this facts is expressed in 4.3. Nowadays, the 𝑄-function is a key element of many

methods for solving the reinforcement learning problem.

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{
∞∑︁

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (4.3)

Back to the dynamic programming, two main components of DP methods are:

∙ Policy evaluation, which means computing a value function 𝑉 𝜋 from policy

𝜋 and applying it on a task.

∙ Policy improvement that improves policy 𝜋 based on behavior of value

function 𝑉 𝜋

21



FEI KKUI

These two steps are repeated infinitely in a loop until convergence to optimal policy,

however, this is possible only with a perfect system model. Even if dynamic pro-

gramming methods present a necessary theoretical background for other methods,

they are less utilized due to this limitation.

The first step in a dynamic programming methods is policy evaluation. A formal

description of this process is expressed by 4.4 according to Bellman’s equation.

Equation 4.4 represents an iterative approach to solution of 𝑛 Bellman’s equations.

𝑉𝑘+1 =
∑︁

𝑎

𝜋(𝑠, 𝑎)
∑︁
𝑘′

𝑃 𝑎
𝑠𝑠′(𝑟𝑎

𝑠𝑠′ + 𝛾𝑉𝑘(𝑠′)) (4.4)

𝜋(𝑠, 𝑎) is a probability of taking an action 𝑎 in state 𝑠 according to the policy 𝜋.

Function 𝑃 𝑎
𝑠𝑠′ represents a transition probability distribution ending up in a state 𝑠′

and 𝑟𝑎
𝑠𝑠′ is expected immediate reward.

Although we can determine the effectiveness of a current policy in a decision process,

if we want to get to the optimal one, we need to make a decision whether to change

the current policy or not. This decision can be made in a following way. Let an

agent be in state 𝑠, evaluating 𝑄𝜋 value for each possible action. The best policy is

then greedy selected as the one with highest 𝑄 value. This algorithm is described

by equation 4.5 and it is called the policy improvement.

𝜋′ = arg max
𝑎

𝑄𝜋(𝑠, 𝑎) (4.5)

Starting with a policy 𝜋0, whole process is expressed by equation 4.6 and it is called

the policy iteration. Symbols E and I in the equatian means the evaluation and the

improvement process in the iteration.

𝜋0
𝐸−→ 𝑉 𝜋0 𝐼−→ 𝜋1

𝐸−→ 𝑉 𝜋1 . . .
𝐼−→ 𝜋* 𝐸−→ 𝑉 * (4.6)

22



FEI KKUI

4.4.2 Monte Carlo Methods

Opposing to the previously described DP methods, Monte Carlo (MC) methods

does not require a full knowledge of the system in which an agent exists. The key

element is on the other hand knowledge from experience, which an agent acquire

while performing a task. Due to this fact, MC methods are only usable for the type

of episodic task, which is a task where exists a final termination state. The process

of navigating robot from a start state ending up in a terminal state is called an

episode.

Although MC approach might seem entirely different from the DP, learning process

again consists of two main components, the policy evaluation, and policy improve-

ment. The main idea of the learning process is thus trying all possible options to

find the best policy. According to this idea, policy evaluation process now estimates

action-value function 𝑄𝜋 averaging the results from all trials starting from state 𝑠0.

Note that the result is meant to be a cumulated reward after getting to the terminal

state. Policy improvement process now can also be described by equation 4.5 from

the previous section.

The problem with this approach may occur when strictly following the policy. Ex-

ploration process would then ignore some states and actions that might also be

very good. The solution to this problem is utilizing a so-called 𝜀-greedy policies.

Following this policy means to decide for action according to the policy 𝜋 with a

probability of (1 − 𝜀) and for random action with a probability of 𝜀. Appropri-

ate selection of parameter 𝜀 (which doesn’t need to be constant) then ensures the

exploration process as well as an optimization process.

The control process of Monte Carlo methods is represented by the equation 4.7.

𝜋0
𝐸−→ 𝑄𝜋0 𝐼−→ 𝜋1

𝐸−→ 𝑄𝜋1 . . .
𝐼−→ 𝜋* 𝐸−→ 𝑄* (4.7)

23



FEI KKUI

4.4.3 Temporal Difference methods

As written in [7], if one idea in the reinforcement learning is central and novel it is

certainly the Temporal Difference (TD) learning. It is a combination of main ideas

from MC and DP methods. We can define a TD learning as an approach, which does

not require the strong mathematical formulation of the system and can also learn

from values of successors. In addition, it is importance in a real world application

lies in it is capability of learning continuous tasks as well.

When looking back at the MC methods, the value function iteration is described by

equation 4.8.

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼[𝑅𝑡 − 𝑉 (𝑠𝑡)] (4.8)

In the case of MC methods this means that 𝑉 (𝑠𝑡) could be evaluated only after end

of episode (when we know the final cumulated reward). On the other hand, in the

case of TD learning 4.8 can be rewritten to equation 4.9.

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)] (4.9)

This means that new 𝑉 (𝑠𝑡) can be updated after every step according to the suc-

cessor represented by 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) in the equation. 𝑟𝑡+1 in the equation is an

immediate reward in step 𝑡 + 1 and 𝑉 (𝑠𝑡+1 is a value in this step. This equation is

also called TD prediction.

4.4.4 Q-Learning

Previous sections were focused on the most common approaches to reinforcement

learning, which are not usually implemented, but take an important role for the most

of other advanced algorithms. However, the following algorithm is cannot be called

a basic approach because it comes out from the previously mentioned approaches.

24



FEI KKUI

It is included in this section because it will take a major role in next chapters and

experiments.

Q-learning or also referred as Off-Policy Temporal Difference Control is a method

that does not rely on the policy being followed. In the other words, new 𝑄 function

is approximated only by the previously learning 𝑄 function. As an alternative name

signalizes, this algorithm is a member of TD methods family. We can formally

describe the Q-Learning by equation 4.10.

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 arg max
𝑎

𝑄(𝑠𝑡+1, 𝑎)−𝑄(𝑠𝑡, 𝑎𝑡)] (4.10)

According to Bellman’s optimality equation mentioned before, it is guaranteed that

this iteration converges to the optimal 𝑄*, if all (𝑠, 𝑎) pairs are updated infinitely

many times.

Practically speaking about the implementation of this method, action-value function

Q can be represented as a multidimensional array. If we simplify denotation of state

to si = (𝑠𝑖0, 𝑠𝑖1 . . . 𝑠𝑖𝑛), the finite set of states where 𝑛 is also a finite constant, we

can express the Q function in a following way according to 4.11.

𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎2 . . . 𝑎𝑛

s1 𝑞11 𝑞12 . . . 𝑞1𝑛

s2 𝑞21 𝑞22 . . . 𝑞2𝑛

... ... ... . . . ...

sm 𝑞𝑚1 𝑞𝑚2 . . . 𝑞𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.11)

The learning algorithm goes in the following order:

∙ Initialization of learning parameters 𝛾 and 𝛼, 𝑄-table randomly and a reward

function.

∙ For each episode initialize a random state and do while target state is reached:

1. Select an action 𝑎𝑖 according to policy derived from current 𝑄-function.

25



FEI KKUI

2. Execute selected action 𝑎𝑖.

3. Observe new state s.

4. Update the 𝑄-function according to the update rule 4.10.

5. Update current state with a new state.

26



FEI KKUI

5 Reinforcement learning in Teleoperation

The following section discusses algorithms that utilizes the reinforcement learning

and might find application in problems regarding learning from teleoperation.

5.1 General scheme of learning

In the beginning, it seems appropriate mentioning general terminology, which is

interpreted differently in both approaches, but has almost the same meaning. I

would like to emphasize an allegory in terms teleoperator and an agent. In both

cases, the term means some object that executes actions in its environment. In

the case of teleoperator, the decision process is delegated to the operator, who is

supervising the whole system. On the other hand, in the case of reinforcement

learning, an agent is taking decisions on himself according to the strategy. When

talking about an environment, it can be represented similarly in both cases. The

question now stands, whether we can fit an operator somewhere in the reinforcement

learning process described by figure 4 – 1. The figure can be modified in a way, which

can be seen in figure 5 – 1 [12]. As can be seen, the operator is placed right in the

middle, between the environment and an agent. Learning process then goes in the

following way:

∙ Operator is informed about the current state in which an agent happens to

be.

∙ Operator (usually a human) makes a decision about the action (knowing all

possible actions).

∙ Agent executes the commanded action.

∙ Environment derives new state according to inner model of dynamics.

27



FEI KKUI

∙ Inner decision model of Agent is updated according to reward and implemented

learning algorithm.

The goal of the learning process is visually described in figure 5 – 2. As can be seen,

decision process does not go directly through an operator. Instead, the operator

takes the position of a supervisor, who just looks after the decisions made and in a

critical situation can change the decision. Despite this, the system might be fully

autonomous on the particular task. In the learning process, the influence of the

operator in the decision process should be decreased until an agent can decide well

enough. In this step, the agent is considered to by just a supervisor of the system.

Agent -
Teleoperator

Operator

Environment

at

st rt

decision

Figure 5 – 1 Utilizing Teleoperation in process of Reinforcement Learning to learn decision strat-

egy according to human.

𝑠𝑡 in the figures 5 – 1 and 5 – 2 stands for a state observed in a time step 𝑡. The 𝑟𝑡

is a reward observed and 𝑎𝑡 is an action selected in the time step 𝑡. These variables

corresponds with nomenclature used in chapter 4. Following sections introduce

algorithms, which can be used in a learning process.

28



FEI KKUI

Agent -
Teleoperator

Operator

Environment

atst rt

SupervisionStatus

Figure 5 – 2 Operator in a position of a supervisor, after system has learned the decision model.

5.2 GARIC

5.2.1 Overview

Name for this architecture comes from Generalized Approximate Reasoning based

Intelligent Control, and it is something an upgraded version of ARIC architecture

proposed in [13]. Generally speaking about the GARIC proposed in [14], it is a

joint of 2 neural networks called ASN (Action Selection Network) and AEN (Action

Evaluation Network), and a system for adjusting final action called SAM (Stochastic

Action Modifier). General scheme for this architecture can be seen in figure 5 – 3.

5.2.2 Action Evaluation Network

The AEN is a network that evaluates the state of the controlled system and rate it

to predict the future reward acquired. Similarly to the Q-learning, where 𝑄 value

29



FEI KKUI

updates

systemSAM

AEN

ASN

state failure signal

state

r

s

r̂

F

F’

v

Figure 5 – 3 General architecture of GARIC.

predicted the final reward, this network is also used as a predictor, although it will

not predict the cumulative reward, but only single future reward. The problem that

this part solves is also called multi-step prediction and is solved by so-called 𝑇𝐷(𝜆)

algorithm derived from Temporal Difference method mentioned earlier.

The structure of the network can be seen in figure 5 – 4. Input layer accepts state

vector and a random bias, which can help network learn desired mapping faster.

Output from this network is prediction of reward 𝑟(𝑡+1). Atypically, output neuron

is not connected to just last hidden layer, but also to the input layer.

To combine this algorithm with a teleoperation, the learning process could be

divided into 2 stages similarly to the general scheme mentioned earlier. In the first

stage, decisions are made by operator and rewards returned by this network should

be higher, as far as we assume that decisions of the operator are always correct. To

reach the stage two, where the operator is in a position of a supervisor, we should

decrease the ratio of decisions made by the operator and an agent. In addition, the

system should produce lower rewards for decisions made by the agent, due to its

controversy.

30



FEI KKUI

x0

x1

xn

y1

y2

yh

v
.
.
.

.

.

.

Figure 5 – 4 Structure of AEN module in GARIC.

5.2.3 Action Selection Network

The main goal of this network is to select a proper action for controlled system. In

other words, this network is a fuzzy controller in a form of a neural network. The

network, as it is, consists of 5 layers that can be seen in figure 5 – 5.

The first layer is used just for the input of crisp values. These neurons, or better-said

nodes, are connected to few neurons in the second layer, where these crisp values are

fuzzified. Each of the nodes in the second layer fulfills a task of being a membership

function for the corresponding input value. Nodes in layer 3 are then used as a rule

base for this fuzzy controller and layer 4 holds membership functions for the output

variables. At the end, there is one node, which is used for a defuzzification of the

output.

This network is not learned traditionally by changing the weights between nodes,

but instead by adjusting the shape and position of membership functions. In the

original algorithm described in [14], the network is trained without the presence

of any supervisor and desired behavior is learned only according to AEN module

prediction. This algorithm could be modified so that it accepted supervision from an

operator. According to the scheme described in previous section, in the first stage

of learning process, decisions would be made by a human operator. Information

31



FEI KKUI

1

m1

n2

1

n1

1

i

n4

1

2

j

n3

Figure 5 – 5 Internal structure of ASN module of GARIC architecture.

collected from the environment would then be used as training samples for ASN.

After the network was learned, the ASN could take full control of decision process.

5.2.4 Stochastic Action Modifier

The SAM combines knowledge from the AEN and ASN, using it to produce real

action F’(t). It uses a Gaussian random variable with mean F(t) – action from

ASN, and standard deviation that is a function of reinforcement from the AEN.

Even though originally designed system contained this part in [9], it was proved in

[10] that this part can be completely omitted.

5.3 Neural Fitted Q Iteration

Speaking of all the reinforcement learning approaches mentioned before, it was

strongly emphasized that the set of all states and actions must be finite. This

restricts us to the narrow set of application with discrete and not too large state

space. However, real world application usually requires continuous state space de-

scription with infinitely many states. This requirement thus forces us to look for

learning alternatives or methods for discretization of state space utilizing various

the discretization grids of fuzzy logic.

32



FEI KKUI

A problem with these methods arises when discretization is too firm. This may

fail the whole learning process due to unrecognizable states so learning the optimal

policy would be impossible. On the other hand, when discretization is too precise,

a problem may occur with too many states in many dimensional state spaces and

thus make system lose the ability to generalize decisions.

5.3.1 Main concept

As the title of the method suggests, the Neural Fitted Q Iteration (NFQ) algorithm

[15] is a derivation of 𝑄-learning mentioned earlier. According to the 𝑄-learning,

the Q function is represented by the multidimensional array and thus is also lacking

the applicability in real world problem. The main idea of NFQ is the improvement

of the algorithm, replacing the array function with a function approximated using

a neural network. This basically removes any need for a state space discretization

method without information loss.

To truly understand the meaning of the 𝑄-value in the decision process, we need

to look back at the definition of the 𝑄-function. According to it, Q-value is a final

reinforcement acquired after reaching the goal state 𝑆+, when taking an action 𝑎

in state 𝑠𝑡 and following the optimal policy 𝜋* after then. The update of the 𝑄-

function is then realized by expression 4.10 which will serve as a desired value in

neural network training. When looking at the equation more in detail, we can see

that the current 𝑄-value is dependent on the 𝑄-value from the next step and evolving

this sequence brings us to the recursive relation between current state 𝑄-value

and the 𝑄-value at the target location.

However the function is represented by a neural network, the update process has

to be adjusted for its purposes. When we were talking about basic 𝑄-learning, we

updated the function each time an agent made a step. This approach is, unfor-

tunately, not sufficient in the case of a neural network, because learning just one

33



FEI KKUI

sample would cause unpredictable changes in knowledge learned before. Thus, to

learn the network, we first have to collect training data in a set and then learn the

network on it.

5.3.2 Basic NFQ Algorithm

The first difficulty in this algorithm is the acquisition of sufficient data. When

looking back at 4.10, we notice that to evaluate the equation, we need to collect

current and the next state, action selected and optionally also a reward. Thus first

step in NFQ is gathering of training tuples [𝑠𝑡, 𝑎, 𝑠𝑡+1(, 𝑟𝑡+1)].

The new 𝑄-function can be trained only when the sufficient amount (differs ac-

cording to the task) is collected. To do this, each training sample is transformed

into neural network training pattern, so that the input information consists of state

vector s and an action number, which is usually encoded in some way. In my ex-

periment, the action number is transformed into an array, which length is equal to

total number of actions available. The array then contains 0’s, and 1 is placed in

the position of the action number, e.g. 𝑎3𝑜𝑓4 →
[︂
0 0 1 0

]︂
.

To get the desired value of the training pattern for the output of the neural net-

work, we evaluate the equation 4.10 using state and action information from the

sample. The 𝑄-value for the next state is then evaluated using the current neural

network. A problem may occur in the evaluation process because standard sigmoid

activation functions usually can’t work with values higher that 1. Due to this fact

equation 4.10 is transformed to the 5.1 setting the learning parameter 𝛼 equal 1.

The main principle behind this transformation is that we do not look at the rein-

forcement learning problem as a maximization of a cumulative reward, but instead

minimization of cumulative punishment. Thus 𝑄-value equal to 0 is the ideal one.

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑟𝑡+1 + 𝛾 arg min
𝑏

𝑄(𝑠𝑡+1, 𝑏) (5.1)

34



FEI KKUI

NFQ algorithm then works in a following steps:

1. Training samples acquisition.

2. Random network initialization.

3. While sufficient 𝑄-function is found or maximum epochs reached:

(a) Transformation of samples into training patterns evaluating the updated

𝑄-values.

(b) Learning of network using these data.

(c) Optional acquisition of additional data samples.

5.3.3 Utilization of NFQ in Teleoperation

The NFQ learning scheme is an excellent mechanism for learning tasks in the real

world with the continuous state space. In the previous section, I briefly described

the learning mechanism and left an open space for a method of training sample

acquisition. In common NFQ approach, these samples are collected during agent’s

greedy environment, but to increase the efficiency of the training algorithm, we can

replace this mechanism with a teleoperation. This method will be described in detail

in following section, which is dedicated to the implementation of this algorithm and

testing in on so-called predator and prey task with a humanoid robot.

35



FEI KKUI

6 Experiment

In the following sections, I will describe an experiment I made utilizing the early

mentioned NFQ algorithm merged with teleoperation technique. The experiment

was tested in simulator environment Webots on humanoid robot NAO from Alde-

baran Robotics.

6.1 Task description

The main idea behind the experiment is a test of a proposed method on some, ideally

an easy, task. I consider an easy task to be the task, in which state representation

could be easily collected from a learning process, and action set should be sufficiently

descriptive even for a layman. Another parameter, which this task should fulfill is its

measurability from the perspective of succeeding in the learning process. The last

but not the least important parameter is the small values of initial MTIA described

in 2.3.

According to these criteria, I selected a so-called Predator-Prey task. Agent in this

task is in a role of predator following some (static or dynamic) target. Due to

simplicity, at first, consider the target to be some position in a state space marked

with a ball on it. Thus, the training task will be a robot trying to get to the ball. We

can conclude that this task will have an initial MTIA equal one because the robot

will not be able to approach the target position without any human experience

deliberately. Status information will be collected in Webots simulator environment

and saved into the database, what meets the requirement for easy access.

The learning process of this task will consist of episodes, where the initial state of

a robot and position of the target will be randomly chosen. Agent will be learning

from the experience observed from the human teleoperation. A human operator

36



FEI KKUI

will be able to control the decision process using an interface in his browser. The

optimal policy is considered to be found when an agent is capable of reaching the

goal state in a reasonable number of steps all by himself.

6.2 Technology used in experiment

6.2.1 Webots

Webots simulator from Cyberbotics is a development environment providing a simu-

lation of different kind of robots. This simulation tool provides an enormous amount

of customization to model the real world situation. A developer can choose from

various types of objects with the ability to change their properties like shape, color or

even physical properties to adjust their behavior. The whole world can be monitored

with a broad spectrum of sensors.

The basic concept of programming in Webots lies in creating controllers for each

object. These controllers can be programmed either using a built-in IDE or some

third party application, and Webots provides a freedom in selecting one of the four

accepted programming languages. A developer can choose between a C/C++, Java,

Python or Matlab and the API provided is almost the same.

The most important part in Webots and a reason why I chose it for the purposes

of the experiment is a module called a Supervisor. Generally speaking, supervisor

behaves in a same way as a normal robot but it is not physically present in the world

simulation. It can monitor the status of all other objects in the simulated world and

also change their properties during runtime. In my experiment, the Supervisor

module will be used for collecting the state data and ()utilizing a programmed

controller) uploading it to the database.

37



FEI KKUI

6.2.2 Redis

Redis is a fast open-source database that is a member of NoSQL databases family.

This means that the data stored in the database are not ordered in tables with some

relations but ,on the other hand utilizes so-called key-value approach. This method

is very appropriate for purposes when the data model is often changed what my

case is. Redis provides API for all of the major programming languages including

Python and C, which form a base of experiment application.

Experiment data stored in a database contain state information in a numeric format,

an overview of current episode and steps made and finally also a neural network

structure. Complex structures like neural network weights are stored in a JSON

format, which is widely accepted standard.

6.2.3 NAO

NAO is a French humanoid robot developed by company Aldebaran Robotics, which

released the first version in 2008. This platform has been widely used in an academic

field since then including our laboratory. NAO’s hardware provides 25 degrees of

freedom and can be programmed in c. ten languages including Python. Robot

brings a user-friendly and easy-to-implement API, which is one of the reasons why

I chose this robot for the experiment. As mentioned before, a fundamental part of

the experiment is programmed in Python, and thus API is fully compatible with it.

NAO in the experiment will take the place of an agent, whose action set will consist

of walking in different directions and rotations.

38



FEI KKUI

6.3 Reinforcement learning from teleoperation

In the previous chapter, I tried to briefly outline an idea behind the combination of

teleoperation and reinforcement learning. The point was to develop a mechanism

that will unburden a human in performing some task, utilizing his knowledge and

also accelerating the learning process. When speaking about an utilization of human

operator’s knowledge, it is important to mention that the operator is often not a

specialist in the field, thus it comes handy to develop a method that is user-friendly

enough even for a layman. When talking about conventional machine learning ap-

proaches the knowledge usually has to be in strictly mathematically formulated.

Utilization of teleoperation techniques in the learning process helps to overcome this

problem.

On the other hand, when talking about common reinforcement learning approaches

like MC methods mentioned in the 4.4.2 large amount of training experience is

required to achieve at least satisfactory results. Utilizing a teleoperation in the

acquisition process again helps to overcome such an issue.

For the purposes of this experiment, I have chosen approach described in 5.3. It is a

modification of 𝑄-learning so that it can be applied even in a continuous state space.

The great advantage of this method is its independence of formal environment model

and also on a policy. A fundamental part of the whole algorithm is a neural network

that is expected to learn the decision model from provided training samples and

generalize it to the whole state space.

6.3.1 Modified NFQ Algorithm

Even though an algorithm might seem perfectly ready for implementation in this

task, a problem may occur in combination with teleoperation. The main concept of

this algorithm is updating the 𝑄-function infinitely often from the samples acquired

39



FEI KKUI

until the optimal one is found. This means that in earlier stages of learning process,

when 𝑄-function is not trained well enough, so the situations, when an agent decides

for an action that might seem incorrect from the operator’s point of view may occur.

This might cause a serious problems in the neural network learning process in a form

of inconsistency in training data. To overcome this issue, I propose utilization of

teleoperation in these early stages to prevent the inconsistent data, as far as we

consider every operator’s decision to be the correct one.

On the other hand, if we forced an agent to accept exclusively operator’s orders

during the whole learning process, we would not be able to monitor its progress.

Due to this fact, it seems logical to distribute the ratio between the operator’s and

an agent’s decisions. To prevent collisions between operator’s and agent’s decisions,

I have modified the basic algorithm so that when an agent’s decision is made, train-

ing pattern is created according to the 5.3 algorithm. On the other hand, when

operator’s decision is made, a pattern for each of available actions is created accord-

ing to 6.1. This modification has rapidly accelerated the learning process and also

suppressed the inconsistency in training data.

𝑄(𝑠𝑡, 𝑎𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑟𝑡+1 + 𝛾 arg min

𝑏
𝑄(𝑠𝑡+1, 𝑏) for action selected by an operator

𝑟𝑡+1 + 𝛾 arg max
𝑏

𝑄(𝑠𝑡+1, 𝑏) for every other action 𝑎 ∈ 𝐴

(6.1)

Another inconvenience that may occur during the learning process is also related

to the neural network training. Although the author of the paper [15] also points

at this problem, I would like to go a bit deeper. As he states, the main problem

with the conventional approach is an online update of 𝑄-function. Proceeding this

way in neural network practice would cause unpredictable behavior of the network.

This means that a small change in one area of state-action space may cause a huge

change in the entirely different part of it. Due to this, the author suggests using

more sophisticated batch learning approach, in which training samples are collected

40



FEI KKUI

in batch and weights are updated to the cumulative error over the whole batch.

The problem may, however, persist when the sample set is generated every training

episode. This might lead to loss of knowledge learned during previous episodes. Due

to this, I am stacking training samples into one, and before every episode, training

patterns are generated from this samples according to 5.3 and 6.1.

The fact that I am utilizing the batch learning instead of common online learning is

providing me ability to use advanced learning techniques. One of them is a method

called RPROP and is also suggested by [15]. Utilizing this method helped me shorten

the neural network training process from 100 000 training epochs to just 500, what

also helped accelerate the whole process.

6.3.2 RPROP Training

Name of the algorithm RPROP comes from resilent propagation and as an author

in [16] states, it is a new approach to learning that rapidly increases the training

time. In this section, I would like to briefly discuss the main idea of this algorithm

and my experience with it.

In a conventional approaches in multilayer perceptron learning (like Backprop), the

weights are updated according to the well-known equation 6.2. The performance of

the network is so crucially dependent on a choice of 𝛾 parameter and the size of the

error. RPROP helps to overcome this weakness by relying not on the size of this

variable, but only its sign.

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡)− 𝛾
𝜕𝐽(𝑡)

𝜕𝑤𝑖𝑗(𝑡)
(6.2)

The update rule is formally described by equations 6.3 and 6.4, where Δ𝑖𝑗 stands

for so-called update-value. 𝜂+ and 𝜂− are learning constants experimentally set to

1.2 and 0.5.

41



FEI KKUI

Δ𝑤𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑖𝑗(𝑡) if 𝜕𝐽(𝑡)
𝜕𝑤𝑖𝑗(𝑡) > 0

+Δ𝑖𝑗(𝑡) if 𝜕𝐽(𝑡)
𝜕𝑤𝑖𝑗(𝑡) < 0

0 else

(6.3)

Δ𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜂+Δ𝑖𝑗(𝑡− 1) if 𝜕𝐽(𝑡)
𝜕𝑤𝑖𝑗(𝑡)

𝜕𝐽(𝑡−1)
𝜕𝑤𝑖𝑗(𝑡−1) > 0

𝜂−Δ𝑖𝑗(𝑡− 1) if 𝜕𝐽(𝑡)
𝜕𝑤𝑖𝑗(𝑡)

𝜕𝐽(𝑡−1)
𝜕𝑤𝑖𝑗(𝑡−1) < 0

Δ𝑖𝑗(𝑡) else

(6.4)

As mentioned, even though the implementation of this algorithm brought rapid

acceleration of the training procedure, it also brought some inconveniences. The

first problem of this algorithm is its complexity. In the algorithm’s implementation

this means, that instead of storing one multidimensional array of weights, one has

to store also the update-value for each weight and also a trace of the previous error.

Another issue appeared when training on flat error function surfaces. This method

has a high tendency to end up in some local minimum and no mechanism to get

out of it. I solved this problem experimentally when the problem disappeared after

adding another hidden layer of neurons or just enlarging the current layer. This

practically meant that to reliable learn the net on training XOR problem, I had to

change the configuration from 2-2-1 to 2-5-1 which also brings a performance issues.

Due to this, computation part of the neural network and even of a reinforcement

learning algorithm is written purely is C and built with optimization libraries. Table

6 – 1 describes the comparison of RPROP and conventional Backprop performance

on learning simple XOR problem. The task was to reach the same precision on

the same machine, with the same initialization. As we can see the performance of

RPROP is dramatically better at the expense of reliability.

42



FEI KKUI

Table 6 – 1 Comparison of RPROP and Backprop learning algorithms.

Name Configuration Epochs Training time Success Rate

Backprop 2-2-1 106 avg. 0.5𝑠 > 95%

RPROP 2-2-1 150 < 1𝑚𝑠 ≈ 85%

Backprop 2-5-1 105 avg. 0.1𝑠 100%

RPROP 2-5-1 85 < 1𝑚𝑠 > 95%

6.4 Experiment setup

As far as I am modeling a reinforcement learning task, let me first connect theoretical

terms with specific objects and properties in the simulator.

Environment of the task will be formed by an infinite simulated stone floor without

any obstacles in it.

As mentioned earlier, the agent will be represented by a simulated NAO robot and

his goal will be to approach a target position in the environment. The target position

will be marked with an orange ball on it.

State information will consist of 2 variables. First will be a direct distance of the

agent from the target position. The second one will be an angle 𝛼 between the

orientation vector of the robot and a flow line between the center of the robot and

the ball. Values of these variables are also normalized so that they lie in interval

< 0, 1>. In the figure 6 – 1, we can see the state information visually described on

a screenshot from Webots environment.

Actions set will at the beginning consist of three motions. NAO robot API provides

a method for moving the robot to the target position specifying three necessary

parameters that are distance walked in the x-axis in meters, in the y-axis and a

rotation of robot 𝜃. According to this method setup, first action will have param-

eter (0.25, 0, 0), second (0.1, 0.1, 𝜋/6) and last (0.1, 0.1,−𝜋/6). This will represent

43



FEI KKUI

walking directly or turning either to the right side or the left side.

A reward function or maybe better said punishment function will have the following

setup:

𝑟𝑡+1 =

⎧⎪⎪⎨⎪⎪⎩
0 when 𝑠𝑡+1 ∈ 𝑆+

0.1 else

This basically means that the goal is to minimize a cumulative reward and approach

a target in a minimum number of steps. State 𝑆+ is achieved if the robot is maxi-

mally 0.5m away from the ball and his rotation angle is less then 30∘ (assuming that

direct angle is equal 0∘).

The discount parameter 𝛾 will be equal to 0.99.

As mentioned before, for the purposes of function approximation I have used a

conventional multilayer perceptron trained by innovative RPROP method. Due to

the predisposition of this method to end up in a local minimum, I have chosen

larger network setup with 5 inputs (2 state variables, 3 action encoding places),

2 hidden layers with 20 neurons (I experimentally verified that 10 is also enough)

and 1 output neural representing the 𝑄-value for current state-action pair. Each

training cycle consisted of 1000 training epochs, which also experimentally turned

out to be sufficient. The fewer training epochs are also important due the fact

that training samples are collected over time and stacked, so the training time is

increasing exponentially with each episode.

6.5 Experiment evaluation

In this section, I would like to analyze the experiment from 2 main aspects. First

of them is its asset in the area of incremental learning and its impact on the whole

performance. The second aspect is regarded to a gradually decreased involvement

by human in the achieving the goal of a task.

44



FEI KKUI

Figure 6 – 1 State information in the experiment

According to the first aspect, the point was to evaluate objectively agent’s perfor-

mance after each episode. According to the definition mentioned earlier, an episode

starts from a random position in a state space and ends after reaching the target

area. In the experiment, the robot is placed randomly throughout the floor (also

randomly rotated), and operator navigates him to the target. When the target area

is reached, the neural network is updated. After each of these episodes, a testing

process is also launched, with the following functionality. The robot is placed at

the testing spots, and his autonomy is tested utilizing his own decision policy. A

quantitative measure in this experiment is an average cumulative reward received

during the test. Various initial positions are selected as a testing spots to test the

policy in various situation (far and close places, facing the target or turned back).

Of course, the testing spots are always the same after each of the episodes.

In the figure 6 – 2 we can see a progression of task learning process. The y-axis

45



FEI KKUI

represents the average cumulative reward acquired during the test after each of

the episodes. I set the upper bound of the reward to 5, which corresponds to

approximately 50 steps. If the agent was not able to approach the target in this limit,

the attempt was considered to be failed, and the agent was straying. The dashed

line in graphs represents imaginary border, after all testing trials were successful.

After this border only few uncertainties appeared in the decision process. The local

minimum in the episode 2 means that the robot was able to find the target in one

or more trials, however it is more probable that it was a coincidence.

Episode
1 2 3 4 5 6 7 8 9 10 11

C
um

ul
at

iv
e 

re
w

ar
d

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 6 – 2 Task learning process performance overview.

The second aspect of the learning process was regarded to increasing machine au-

tonomy of the agent in the task. Figure 6 – 2 partially informs us about the status,

so that after each episode robot can finish the task autonomously from different

starting positions. After the sixth episode, the robot is fully autonomous in the

task, and just some enhancements in the decision process are made. To increase the

level of autonomy even during the learning process, I have implemented a mecha-

nism that randomly leave an opportunity for the agent to decide. The number of

agent’s decisions are also increased over the episodes so after some time, the agent

can train the task absolutely independently.

46



FEI KKUI

Figure 6 – 3 displays a dependency of an MTIA on the number of learning episodes

passed. As mentioned in 2.5, low MTIA value corresponds to low agent’s autonomy

and vice versa. We can also see that agent is capable of fully independent learning

after episode 15.

In figures 6 – 4 and also 6 – 5 we can see robot’s performance during the task. Figures

basically describe the movement of the robot in the space state, beginning in the

same position. In the figure 6.4 we can see robot performing the task without any

knowledge. As we can see, the robot is randomly wandering with low probability

of approaching the target state, which is represented by a red cross. On the other

hand, in figure 6 – 5, we can see that robot is doing very well when he can approach

the goal state in 13 steps. For a better illustration of state variables development, I

draw colored projections so that we can see how decision policy is converging.

Episode
2 4 6 8 10 12 14

M
T

IA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6 – 3 MTIA level of an agent during learning process.

To finally evaluate the experiment, I can say that this experiment was successful in

a meaning of decreasing the human operator’s involvement in performing specific

tasks, but also in the learning process. This experiment is also significant from a

practical point of view, due to its control simplicity. I experimentally verified, that

47



FEI KKUI

−100

0

100
2

4
6

8
10

120

1

2

3

Ste
pAngle [degrees ]

D
is

ta
nc

e[
m

]

Figure 6 – 4 State variables before learning process.

even an absolute layman can teach a robot to perform trivial task autonomously,

without a knowledge of the programming language or robot’s kinematics. This

increases its potential in practical applications not only in the academic field but

48



FEI KKUI

−100

0

100
2

4
6

8
10

120

0.5

1

1.5

Ste
pAngle [degrees ]

D
is

ta
nc

e 
[m

]

Figure 6 – 5 State variables after learning process.

also an industry.

49



FEI KKUI

7 Conclusion

I would like to summarize this thesis from the aspect of goals fulfillment as well as

from the discussed topics.

According to the goals mentioned in 1 I have succeeded in fulfilling the following

tasks:

1. I have reviewed the basic principles and also methods for teleoperation of

robotic systems. Chapter 2 is focused mainly on the terminology and also

application of the teleoperation. In addition, chapter 3 overviews some con-

cepts of learning from a teleoperation applicable also in the area of humanoid

robotics.

2. Chapter 4 discusses fundamental principles and algorithms of reinforcement

learning applicable to the wide range of tasks. This overview also provides a

necessary theoretical background for advanced methods described in the chap-

ter 5. The chapter then focuses on the general scheme of the learning process

in teleoperation with a utilization of a reinforcement learning techniques. The

chapter also overviews some algorithms applicable to this problem and pro-

poses an improvement of one of these methods, to make algorithm applicable

to a humanoid robot in the real environment.

3. Chapter 6 then proposes and describes an experiment, which utilizes method

proposed in chapter 5 and verifies its functionality in a simulated environment

on a humanoid robot NAO. The task of the robot is to follow a ball according

to the strategy learned from teleoperation.

4. The end of the chapter 6 finally discusses the implemented method and ana-

lyzes it from the aspect of incremental learning and also an involvement of an

operator in the teleoperation process.

50



FEI KKUI

5. This tasks is satisfied by generating a complete code reference guide using a

Doxygen API, which also contains a dependency diagram. The user guide and

also a reference guide are enclosed to this work.

In addition to tasks described by the instructions, I have also added some own

enhancements of this work. First of all, I gave a focus on the implementation of

the proposed experiment and all its parts. I’ve given myself the challenge to create

minimalistic user-friendly application accessible from anywhere. For this purposes, I

have developed a server application in Python and a client application in Javascript

communicating over WebSocket for real-time responses and information update.

Such an application is absolutely ready for getting up on the cloud and running as a

web service. When talking about the minimalistic application, I also considered the

learning time and performance of the application. Although the Python is not the

worst choice, for the purposes of neural network training I have implemented a super

fast method called RPROP in pure C and written a C wrapper for it so it could

be imported as a Python module in the server application. The build script also

utilizes every possible optimization libraries, so the final performance is excellent.

The whole system is described in detail in the appendix.

Not to only enhance the scientific aspect of the work, I have decided to compose

also a scientific article that is enclosed in this work.

51



FEI KKUI

References

[1] Batsomboon, P., Tosunoglu, S. 1996. A Review of Teleoperation and Telesen-

sation systems In: 1996 Florida Conference on Recent Advanced in Robotics,

Florida Atlantic University, Florida.

[2] Mebarak, E. and Tosunoglu, S. 2002. On the Development of an Automated

Design Interface for the Optimal Design of Robotic Systems In: Proc. 5th

World Automation Congress, WAC 2002 Pages: 9-13.

[3] Zhu, M., Salcudean, S. E. 1995. Achieving transparency for teleoperator sys-

tems under position and rate control In: Intelligent Robots and Systems

95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995

IEEE/RSJ International Conference on (Vol. 2, pp. 7-12). IEEE.

[4] Pala, M., Sincak, P. 2012. Towards the assisted teleoperation systems In: Ultra

Modern Telecommunications and Control Systems and Workshops (ICUMT),

2012 4th International Congress on IEEE. Pages: 490-495.

[5] Hokayem, P. F., Spong, M. W. 2006. Bilateral teleoperation: An historical

survey In: Automatica, 42(12), 2035-2057.

[6] Chang, S., Kim, J., Kim, I., Borm, J. H., Lee, C., Park, J. O. 1999. Kist teleop-

eration system for humanoid robot In: Intelligent Robots and Systems, 1999.

IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on (Vol. 2,

pp. 1198-1203). IEEE.

[7] Sutton, R. S., Barto, A.G. 1998. Reinforcement learning: An introduction The

MIT Press, Cambridge, MA, London, England, 1998. ISBN 0-262-19398-1.

[8] Sinčák, P., Lorenčík, D., Virčíkova, M., Gamec, J. 2015. Theoretical Analysis of

Recent Changes and Expectations in Intelligent Robotics In: Emergent Trends

52



FEI KKUI

in Robotics and Intelligent Systems. Springer International Publishing. Pages:

13-30.

[9] Argall, B. D., Chernova, S., Veloso, M., Browning, B. 2009. A survey of robot

learning from demonstration In: Robotics and autonomous systems, 57(5),

Pages: 469-483

[10] Ward, K., Zelinsky, A., McKerrow, P., Autumn, A., Ward, K., Zelinsky, E.,

Mckerrow, P. 2001. Learning Robot Behaviours by Extracting Fuzzy Rules from

Demonstrated Actions In: MIPS, Vol6, No.

[11] A. Howard, C.H. Park 2007. Haptically Guided Teleoperation for Learning

Manipulation Tasks In: Robotics: Science and Systems: Workshop on Robot

Manipulation, Atlanta, GA, 2007.

[12] Smart, W. D., Kaelbling, L. P. 2002. Effective reinforcement learning for mo-

bile robots In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on (Vol. 4, pp. 3404-3410). IEEE.

[13] Berenji, H. R. 1992. An architecture for designing fuzzy controllers using neural

networks In: Int. J. Approximate Reasoning, 6(2) Pages: 267-292

[14] Berenji, H. R., Khedkar, P. 1992. Learning and tuning fuzzy logic controllers

through reinforcements In: Neural Networks, IEEE Transactions on, 3(5)

Pages: 724-740

[15] Riedmiller, M. 2005. Neural fitted Q iteration–first experiences with a data

efficient neural reinforcement learning method In: Machine Learning: ECML

2005 (pp. 317-328). Springer Berlin Heidelberg.

[16] Riedmiller, M., Braun, H. 1992. RPROP-A fast adaptive learning algorithm

In: Proc. of ISCIS VII), Universitat.

53



Appendices

Appendix A User guide

Appendix B Reference guide

Appendix C CD


	1 The problem definition
	2 Teleoperation Systems
	2.1 Overview
	2.2 Important notions
	2.3 Teleoperation methods and applications
	2.3.1 Methods
	2.3.2 Applications

	2.4 From teleoperation to autonomy
	2.5 System autonomy

	3 Learning from Teleoperation
	3.1 Learning from teleoperation using Fuzzy systems
	3.1.1 Expanding hyperboxes in the state space

	3.2 Learning from Teleoperation using Neural Networks

	4 Reinforcement Learning
	4.1 Introduction
	4.2 Basic terminology in Reinforcement Learning
	4.3 Markov Decision Process
	4.4 General Reinforcement Learning Approaches
	4.4.1 Dynamic Programming
	4.4.2 Monte Carlo Methods
	4.4.3 Temporal Difference methods
	4.4.4 Q-Learning


	5 Reinforcement learning in Teleoperation
	5.1 General scheme of learning
	5.2 GARIC
	5.2.1 Overview
	5.2.2 Action Evaluation Network
	5.2.3 Action Selection Network
	5.2.4 Stochastic Action Modifier

	5.3 Neural Fitted Q Iteration
	5.3.1 Main concept
	5.3.2 Basic NFQ Algorithm
	5.3.3 Utilization of NFQ in Teleoperation


	6 Experiment
	6.1 Task description
	6.2 Technology used in experiment
	6.2.1 Webots
	6.2.2 Redis
	6.2.3 NAO

	6.3 Reinforcement learning from teleoperation
	6.3.1 Modified NFQ Algorithm
	6.3.2 RPROP Training

	6.4 Experiment setup
	6.5 Experiment evaluation

	7 Conclusion
	 Bibliography
	 Appendices

